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Abstract. Diffraction of internal waves by a submerged body in a uniform current of a two-layer fluid is consid-
ered. The layers are infinitely deep, and the flows are two-dimensional. The linearized potential theory is used for
the inviscid and incompressible fluid. The solution for the circular cylinder, which is either below or above the
interface, is given in the form of rapidly converging series. This is achieved through the use of certain recursive
relations. Numerical results are provided for the exciting forces, wave resistance and lift which may be useful in
testing numerical methods used for the study of internal wave diffraction by a submerged body of arbitrary form.
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1. Introduction

Sea-wave propagation in the presence of different underwater obstacles and diffraction effect
are matters of great importance for water engineering and underwater navigation. The problem
of wave scattering by a submerged body has been investigated in detail for regular linear
surface waves; however, significant scattering of internal waves may occur when underwater
objects are placed near the region of high-gradient density. The simplest example of stratified
fluid is the two-layer fluid. A particular case is a homogeneous fluid with a free surface, as the
air density is assumed negligible compared with the water density.

The linear problem of surface-wave diffraction was studied both for a restricted and uni-
formly moving submerged body. This problem belongs to the linear theory of seakeeping.
In the two-dimensional case the linear theory of seakeeping has been studied in detail for a
circular cylinder submerged in deep water.

Grue and Palm [1], and then Grue [2] pioneered the solution of the radiation and diffrac-
tion problems of a submerged circular cylinder in a uniform current. They used the source-
distribution method. Almost the same problem was considered by Kashiwagiet al. [3], but
they used the integral-equation method for the velocity potential on the body surface and
the first-order approximation for the steady potential: the infinite-fluid solution valid for a
‘deeply’ submerged body. The multipole expansion method was recently adopted by Wu [4].
In his paper the numerical results of the steady, radiation and diffraction loads are tabulated.
In principle, in all above-mentioned papers the inversion of the infinite matrix was required
for obtaining the final results.

In contrast to these methods, Mehlum [5] obtained an explicit solution in the form of
rapidly converging series for wave diffraction by a submerged cylinder without forward speed.
The practical computation of the velocity potential is reduced almost to hand calculations. A
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similar method was proposed by Sretensky [6] for the steady problem on a uniformly moving
submerged circular cylinder. Unfortunately, his paper appeared in a relatively inaccessible
periodical and has remained practically unknown.

The results of [5] were extended to the two-layer infinite fluid for the diffraction prob-
lem without forward speed by Khabakhpasheva [7], and, later on, for the steady problem by
Khabakhpasheva [8]. In both cases a circular cylinder is in the lower layer.

The aim of the present paper is to derive an explicit solution for internal wave diffraction
by a circular cylinder located under or above the interface in a uniform current. The paper is
organized as follows. Section 2 introduces the governing equations. In Section 3 the diffraction
potentials and exciting forces for the cylinder submerged in the lower layer are presented. In
Section 4 similar results are obtained for a cylinder in the upper layer. The tables of exciting
forces for the homogeneous and two-layer fluid are given. For determining the exciting forces
in a diffraction problem with forward speed one needs a solution of the steady problem too.
Appendix A gives a brief solution of the steady problem for a cylinder both in the lower layer
and in the upper layer. The tables of the wave resistance and lift are presented. In Appendix B
the details of the special integrals used here are given.

2. Governing equations

Let a Cartesian coordinate system be taken with thex0-axis directed along an equilibrium
position of the interface in the direction of forward speedU , perpendicular to a cylinder axis,
and they0-axis pointing vertically upwards. The coordinate system moves with the body at
the same speed. In the undisturbed state, the upper fluid layer with the densityρ1 occupies
the domain|x0| < ∞, y0 > 0 , and the lower one with the densityρ2 = ρ1(1+ ε) (ε > 0),
the domain |x0| < ∞, y0 < 0. We assume the fluid to be inviscid and incompressible,
and the disturbance of the interface to be small. The flows in each layer are potential. For a
time-periodic incoming wave at a frequencyω0 the total velocity potential can be written as

8(s)(x0, y0, t) = −Ux0+ U8̄(s)(x0, y0)+ Re{η0[8(s)
0 (x0, y0)+8

(s)
1 (x0, y0)] eiωt },

where8̄(s) is the steady potential due to the unit forward speed;8
(s)
0 and8

(s)
1 are the potentials

of the incident and diffracted waves, respectively; andη0 is the amplitude of the incoming
wave. The superscripts is equal to 1 for the upper layer and 2 for the lower one. The encounter
frequencyω is obtained from

ω = |ω0± k0U |, k0 = ω2
0/ḡ, ḡ = εg/(2+ ε), (2.1)

whereg is the acceleration due to gravity; the signs ‘+’ and ‘−’ correspond to waves travelling
from the right and from the left, respectively.

The incident potentials are

8
(s)

0 = i
√

ḡ/k0φ
(s)

0 exp(±ik0x0), φ
(1)

0 (y0) = −e−k0y0, φ
(2)

0 (y0) = ek0y0. (2.2)

Based on the assumptions of linear potential flow theory, the governing equations for the
steady potential are

∇28̄(1) ≡ ∂28̄(1)/∂x2
0 + ∂28̄(1)/∂y2

0 = 0 (y0 > 0), ∇28̄(2) = 0 (y0 < 0) (2.3)
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with boundary conditions

∇8̄(1)→ 0 (y0→∞), ∇8̄(2)→ 0 (y0→−∞), (2.4)

∂8̄(q)/∂n = n1 ((x0, y0) ∈ S), (2.5)

whereS is the surface of the cylinder,∂/∂n denotes the normal derivative andn1 is thex0-
component of the unit normal vectorn = (n1, n2) pointing into the body. Hereq = 1(q = 2)

if the cylinder is in the upper (lower) layer. The linearized dynamic and kinematic boundary
conditions on the interface are

(1+ ε)
∂28̄(2)

∂x2
0

− ∂28̄(1)

∂x2
0

+ εg

U2

∂8̄(1)

∂y0
= 0,

∂8̄(1)

∂y0
= ∂8̄(2)

∂y0
, (y0 = 0), (2.6)

respectively. We also adopt the radiation condition which assumes that there is no wave due
to steady potentials far in front of the cylinder atx →∞.

The diffraction potentials satisfy equations similar to (2.3)

∇28
(1)
1 = 0 (y0 > 0), ∇28

(2)
1 = 0 (y0 < 0)

with boundary conditions

∇8
(1)

1 → 0 (y0→∞), ∇8
(2)

1 → 0 (y0→−∞),

∂8
(q)

1 /∂n = −∂8
(q)

0 /∂n ((x0, y0) ∈ S), (2.7)

(
U

∂

∂x0
− iω

)2

[(1+ ε)8
(2)

1 −8
(1)

1 ] + εg
∂8

(1)

1

∂y0
= 0,

∂8
(1)

1

∂y0
= ∂8

(2)

1

∂y0
(y0 = 0). (2.8)

The radiation condition for8(s)
1 states that a wave travelling in the direction of the forward

speed, and with its group velocity larger than the forward speed, propagates tox → ∞, and
otherwise the waves propagate tox →−∞.

It is convenient to introduce new unknown functionsϒ(s) and9(s), where

ϒ(s)(x0, y0) = 8̄(s) − x0, 9(s)(x0, y0) = φ
(s)
0 exp(±ik0x0)− i

√
k0/ḡ8

(s)
1 . (2.9)

According to the boundary conditions (2.5) and (2.7) both these functions have zero normal
derivatives on the surface of the cylinder. The dynamic boundary conditions on the interface
for ϒ(s) and9(s) have the same form as (2.6) and (2.8) for8̄(s) and8

(s)
1 , respectively, because

the potentials of the incident wavesφ
(s)
0 in (2.2) satisfy (2.8).

After the steady and diffraction potentials have been obtained, the steady and exciting
forces can be computed from (Newman [9])

Fsj = −ρqU
2
∫

S

(
∂8̄(q)

∂x0
− 1

2|∇8̄(q)|2
)

nj ds, (2.10)
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Figure 1. Submerged circular cylinder under an interface.

Fej = ρqη0

∫
S

[iω(8
(q)

0 +8
(q)

1 )+ U∇(8̄(q) − x0)∇(8
(q)

0 +8
(q)

1 )]nj ds

= ρqη0

√
ḡ

k0

∫
S

(iU∇ϒ(q)∇9(q) − ω9(q))nj ds, (j = 1, 2), (2.11)

whereFs1 is the wave resistance,Fs2 is the lift,Fe1 andFe2 indicate the horizontal and vertical
exciting forces.

The centre of the cylinder is located aty0 = −h(y0 = h) for the body submerged in the
lower (upper) layer. Witha being the radius of the cylinder, we haveh > a. We can now scale
the coordinates so that the dimensionless cylinder radius is equal to unity:

x = x0/a, y1 = y0/a, d = h/a > 1, k = k0a.

3. A circular cylinder submerged in the lower fluid

Let us transfer the origin of the coordinates into the cylinder center obeying the translation
y = y1 + d. The geometry of flow is shown in Figure 1. We introduce the new coordinates
w = u+ iv = ρ eiθ by means of a conformal, bilinear mapping

w = i − Rz

R + iz
, (3.1)

wherez = r eiϕ = x + iy, R = d − γ, γ = √d2− 1.

The fluid is now contained in the circular region, shown in Figure 2. The cylinder surface is
the circle|w| = 1, while the interface is the circle|w| = R. The upper layer is contained in the
circular region|w| < R, and the lower layer is contained in the annular regionR < |w| < 1.
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Figure 2. The image of the flow region shown in Figure 1.

Figure 1 and Figure 2 show the correspondence of certain points of the planesz andw. The
specific feature of the mapping (3.1) is that all points at infinityz→∞ are mapped onto one
pointw→ iR (cf. points E, G, H, K in Figure 1 and Figure 2).

The steady problem solution for this case is presented in detail by Khabakhpasheva [8]. In
Appendix A the basic results are briefly described with corrections of some inaccuracies.

3.1. THE DIFFRACTION POTENTIALS

Let us express the potentials9(s) representing the sum of the incident and diffracted potentials
as the series based on the system of fundamental solutions of the Laplace equation for annular
regions, taking into account that the normal derivative9(2) on the cylinder surface is equal to
zero and9(1) is the analytical function in the circle|w| < R

9(1) =
∞∑

n=−∞
Bnρ

|n| einθ , 9(2) =
∞∑

n=−∞
Cn(ρ

n + ρ−n) einθ . (3.2)

Applying the kinematic boundary condition in (2.8), we can express the coefficientsBn

throughCn atn 6= 0. The potentials in (3.2) can be represented as

9(s) = 5
(s)
1 +5

(s)
2 (s = 1, 2), (3.3)

where

5
(1)
1 (ρ, θ) = B0/2+

∞∑
n=1

C−nR
−
n R−nρn e−inθ ,

5
(1)

2 (ρ, θ) = B0/2+
∞∑

n=1

CnR
−
n R−nρn einθ , (3.4)
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5
(2)

1 (ρ, θ) = C0+
∞∑

n=1

C−n(ρ
n + ρ−n) e−inθ ,

5
(2)

2 (ρ, θ) = C0+
∞∑

n=1

Cn(ρ
n + ρ−n) einθ , (3.5)

R−n = Rn − R−n.

The dynamic boundary condition on the interface (2.8) has the form

τ2

ν

[
∂29ε

∂θ2

(
∂θ

∂x

)2

+ ∂9ε

∂θ

∂2θ

∂x2

]
− 2iτ

∂9ε

∂θ

∂θ

∂x
− ν9ε

+ε
∂9(2)

∂ρ

∂ρ

∂y
= 0 (ρ = R), (3.6)

where

9ε = (1+ ε)9(2) −9(1),

∂ρ

∂y
= −R

∂θ

∂x
= R

γ
(sinθ − 1),

∂2θ

∂x2
= 1

2γ 2
(3− cos 2θ − 4 sinθ), (3.7)

τ = Uω/g, ν = ω2a/g.

Substituting (3.3) in (3.6) and matching the coefficients in front of all terms einθ we get the
system of recursive relations to determine the coefficients in the expansion (3.2).

It is convenient to consider the solution for5
(s)

1 (case 1) and5
(s)

2 (case 2) further in its
own right.

(a)Case 1.
The recursive relations for the coefficientsC−n are

C2−n

τ2

2νγ
(n− 2)(n− 1)Pn−2

+C1−ni(n− 1)

{[
2+ τ

νγ
(2n− 1)

]
τPn−1 + εR−n−1

}

−C−n

[(
4nτ + 2νγ + 3n2τ2

νγ

)
Pn + 2εnR−n

]

−C−n−1i(n+ 1)

{[
2+ τ

νγ
(2n+ 1)

]
τPn+1 + εR−n+1

}

+C−n−2
τ2

2νγ
(n+ 2)(n+ 1)Pn+2 = 0 (n > 1), (3.8)
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where

Pn = εRn + (2+ ε)R−n.

OnceC−1 andC−2 are given, (3.8) allows an explicit evaluation of all coefficientsC−n(n > 2).
Up to now, we do not consider the terms which are independent ofθ . This case in point is at
the end of this section.

The series (3.4), (3.5) will, however, show bad convergence for the pointsx, y far away
from the cylinder, and these series are not suitable for analysis of the asymptotic behaviour of
the potentials (see [5] for more details). Therefore, we need to work out an equivalent solution
which gives direct information about the asymptotic behaviour of the potentials as|x| → ∞.
Using the boundary conditions at|x| → ∞, we will defineC−1 and C−2. To do this we
introduce new functions

G1(ξ) =
∞∑

n=1

C−nR
nξn, G2(ξ) =

∞∑
n=1

C−nR
−nξn (3.9)

and their sum with weights

W1(ξ) = εG1(ξ)+ (2+ ε)G2(ξ). (3.10)

Multiplying the recursive relations (3.8) byξn and summing them with respect ton from 1 to
∞, we obtain the following differential equation

τ̄2

2ν̄γ
(1− iξ)4W ′′1 − i(1− iξ)2

[
τ̄2

ν̄γ
(1− iξ)+ 2τ̄ − 1

]
W ′1− 2ν̄γW1

= K1+ 2i(1+ ε)(1− iξ)2G′1,

where

K1 = τ̄2

ν̄γ
C−2P2− iC−1

[(
τ̄

ν̄γ
+ 2

)
τ̄P1+ (2+ ε)R−1

]
,

(τ̄ , ν̄) = 2+ ε

ε
(τ, ν). (3.11)

A prime denotes differentiation with respect toξ . The general solution of this equation is
given by

W1 = ν̄(1+ ε)

τ̄2(k1− k2)

∞∑
n=1

C−nR
n[In(γ k1, ξ)− In(γ k2, ξ)] − c1 exp

(
− 2γ k2

1− iξ

)

+c2 exp

(
− 2γ k1

1− iξ

)
− K1

2γ ν̄
, (3.12)

where

k1,2 = ν̄

2τ̄2
(1− 2τ̄ ±√1− 4τ̄ ), (3.13)
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In(β, ξ) = 4iβ exp
(
− 2β

1− iξ

)∫ ξ

0

tn

(1− it)2
exp

(
2β

1− it

)
dt (3.14)

andc1 andc2 are constants of integration. Real valuesk1 andk2 are possible at̄τ 6 1
4 only.

The constantsc1, c2 are linearly dependent onC−1 and C−2. Indeed, Equation (3.10) give
W1(0) = 0,W ′1(0) = C−1P1, and according to (3.12)

W1(0) = c2 e−2γ k1 − c1 e−2γ k2 −K1/(2γ ν̄),

W ′1(0) = 2iγ (k2c1 e−2γ k2 − k1c2 e−2γ k1).

Consequently, from the solution of the resulting linear second-order system we getc1 and
c2 for further application in the transformed form

(c1, c2) = (2+ ε)(c̄1 e2γ k2, c̄2 e2γ k1),

where

c̄1 = a1C−1+ b1C−2, c̄2 = a2C−1+ b2C−2,

aq = 1

(2+ ε)(k1− k2)

(
iP1

2γ
− v1kq

ν̄

)
, bq = − kqv2

ν̄(2+ ε)(k1− k2)
(q = 1, 2),

v1 = − i

2γ

[(
2+ τ̄

ν̄γ

)
τ̄P1+ (2+ ε)R−1

]
, v2 = τ̄2

2ν̄γ 2
P2. (3.15)

(b) Case 2.
The solution for5(s)

2 is derived in a similar way. The recursive relations forCn in (3.4), (3.5)
are

Cn−2
τ2

2νγ
(n− 2)(n− 1)Pn−2

+Cn−1i(n− 1)

{[
2− τ

νγ
(2n− 1)

]
τPn−1 − εR−n−1

}

+Cn

[(
4nτ − 2νγ − 3n2τ2

νγ

)
Pn − 2εnR−n

]

+Cn+1i(n+ 1)

{[
τ(2n+ 1)

νγ
− 2

]
τPn+1 + εR−n+1

}

+Cn+2
τ2

2νγ
(n+ 2)(n+ 1)Pn+2 = 0 (n > 1), (3.16)

OnceC1 andC2 have been defined, the series for5
(s)
2 are determined except for the coeffi-

cientsB0 andC0, which are evaluated below. The values ofC1 andC2 can be found with the
help of the boundary conditions at|x| → ∞. We introduce new functions

F1(ξ) =
∞∑

n=1

CnR
nξn, F2(ξ) =

∞∑
n=1

CnR
−nξn, (3.17)
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W2(ξ) = εF1(ξ)+ (2+ ε)F2(ξ) (3.18)

and obtain a differential equation

τ̄2

2ν̄γ
(1+ iξ)4W ′′2 + i(1+ iξ)2

[
τ̄2

ν̄γ
(1+ iξ)− 2τ̄ − 1

]
W ′2− 2ν̄γW2

= K2− 2i(1+ ε)(1+ iξ)2F ′1, (3.19)

where

K2 = τ̄2

ν̄γ
C2P2 + iC1

[(
τ̄

ν̄γ
− 2

)
τ̄P1+ (2+ ε)R−1

]
.

The general solution of Equation (3.19) is

W2 = ν̄(1+ ε)

τ̄2(k3− k4)

∞∑
n=1

CnR
n[Jn(γ k4, ξ)− Jn(γ k3, ξ)] + c3 exp

(
− 2γ k4

1+ iξ

)

+c4 exp

(
− 2γ k3

1+ iξ

)
− K2

2γ ν̄
, (3.20)

where

k3,4 = ν̄

2τ̄2
(1+ 2τ̄ ±√1+ 4τ̄ ), (3.21)

Jn(β, ξ) = 4iβ exp

(
− 2β

1+ iξ

)∫ ξ

0

tn

(1+ it)2
exp(

2β

1+ it
) dt (3.22)

andc3 andc4 are constants of integration, which are linearly dependent onC1 andC2 similar
to case 1. According to (3.18) we haveW2(0) = 0,W ′2(0) = C1P1, and according to (3.20)

W2(0) = c3 e−2γ k4 + c4 e−2γ k3 −K2/(2γ ν̄),

W ′2(0) = 2iγ (k4c3 e−2γ k4 + k3c4 e−2γ k3).

Consequently, from the solution of the resulting linear second-order system, we getc3 andc4

(c3, c4) = (2+ ε)(c̄3 e2γ k4, c̄4 e2γ k3),

where

c̄3 = a3C1+ b3C2, c̄4 = −(a4C1+ b4C2),

aq = 1

(2+ ε)(k3− k4)

(
iP1

2γ
+ v3kq

ν̄

)
, bq = kqv2

ν̄(2+ ε)(k3− k4)
(q = 3, 4),

v3 = i

2γ

[(
τ̄

ν̄γ
− 2

)
τ̄P1+ (2+ ε)R−1

]
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and wherev2 is defined in (3.15). Furthermore, takingξ = Rρ−1 e−iθ in (3.12) andξ =
Rρ−1 eiθ in (3.20), we get

W1 =
∞∑

n=1

C−n[ε(R2n + 1)+ 2]ρ−n e−inθ ,

W2 =
∞∑

n=1

Cn[ε(R2n + 1)+ 2]ρ−n einθ . (3.23)

We shall consider the potential of the lower layer9(2) at the interface. According to (3.5)
atρ = R we have

5
(2)

1 (R, θ) = C0+
∞∑

n=1

C−nR
+
n e−inθ , 5

(2)

2 (R, θ) = C0+
∞∑

n=1

CnR
+
n einθ , (3.24)

whereR+n = Rn + R−n. Using (3.23) atρ = R, we obtain

5
(2)

1 (R, θ) = C0+ (W1+ 2G1)/(2+ ε), 5
(2)

2 (R, θ) = C0+ (W2+ 2F1)/(2+ ε).

In order to determine the behaviour5
(2)

1,2 at θ → π/2 (ξ → i), which is equivalent to|x| →
∞, it is necessary to investigate the properties of the integral functionsJn(β, ξ) andIn(β, ξ).
From (3.14) and (3.22) it is easy to getIn(β, ξ) = −J ∗n (β, ξ), where the symbol∗ denotes the
complex conjugate. Computation of the integralsJn is fully considered in [5], and the basic
results are briefly described in Appendix B.

Using these results, we can present the potentials5
(2)
1,2 at |x| → ∞ as follows

5
(2)
1 = (c̄2− σ1A1) ek1(y−ix−R) + (σ1A2 − c̄1) ek2(y−ix−R) + s1, (3.25)

5
(2)
2 = (c̄4− σ2A3) ek3(ix+y−R) + (σ2A4 + c̄3) ek4(ix+y−R) + s2, (3.26)

where

Aq =
∞∑

n=1

C−nR
nS∗n(γ kq) (q = 1, 2), Aq =

∞∑
n=1

CnR
nSn(γ kq) (q = 3, 4),

σ1,2 = 1+ ε

(2+ ε)
√

1∓ 4τ̄

ands1 ands2 are constants

s1 = C0− K1

2γ ν̄(2+ ε)
+ 2G1(i)

2+ ε
, s2 = C0− K2

2γ ν̄(2+ ε)
+ 2F1(i)

2+ ε
.

From (3.25), (3.26) it is seen that in the moving coordinate system the wavesk1 andk2

propagate from left to right, and the wavesk3 andk4, on the contrary, from right to left. The
properties of these waves are well studied for homogeneous fluids with a free surface (e.g.
[1]–[4]) and are completely replicated for a two-layer infinite fluid. Thek2-wave is traveling
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upstream. Thek1-wave, however, is traveling downstream together withk3- andk4-waves. For
a submerged body of arbitrary form the potentials of the diffraction waves8

(2)
1 are

8
(2)
1 (x, y) = α2 ek2(y−ix) (x →∞), (3.27)

8
(2)
1 (x, y) = α1 ek1(y−ix) + α3 ek3(ix+y) + α4 ek4(ix+y) (x →−∞), (3.28)

where the coefficientsαq (q = 1, 2, 3, 4) are independent of the spatial coordinates and are
identified as a result of solving a particular problem (e.g.Sturova [10]).

When the submerged body is a circular cylinder, according to the above-mentioned results
either the waves with wave numbersk1 andk2 exist at infinity, or those with wave numbersk3

andk4. They cannot exist at the same time. This result is a generalization of the fact that for
U = 0 there is no reflection from a submerged circular cylinder (see [1], [4] for details).

In the space-fixed reference frame, there are three types of following waves depending on
the forward velocity of the body, whereas the head wave is only thek4-wave, irrespective of
the forward speed. In following waves, when the body speed is less than the group velocity
of incident wavescg = ω0/(2k0), i.e.U < cg, the dimensionless wavenumber of the incident
wave is equalk2 . For a body speed greater than the group velocity, but less than the phase
velocity of the incident wavecp = ω0/k0, i.e.cg < U < cp , the incident wave is thek1-wave,
and for a body speed higher than the phase velocityU > cp, it is thek3-wave.

The solutions for each of the possible incoming waves are given below. Let the incoming
wave be ak1-wave. Using (3.27), (3.28) and (2.9), the potential9(2) at the interface in far
field, we can present

9(2)(x, d) = e−ik1x + ᾱ2 e−ik2x (x →∞),

9(2)(x, d) = (1+ ᾱ1) e−ik1x (x →−∞).

In what follows we have

ᾱq = −i

√
kq

aḡ
αq ekqd (q = 1, 2, 3, 4).

The unknown coefficientsC−1 andC−2 for 5
(2)
1 in (3.24) are identified as a result of fulfilment

of the next two conditions in the far field:

(i) the potential of thek1-wave in (3.25) atx → ∞ is equal to the potential of the incident
wave;
(ii) k2-wave is absent atx →−∞.

As a result, we obtain a system of two linear equations to determine the vectorB = (C−1, C−2)

AB = C, (3.29)

where the vectorC = (e−γ k1, 0) and the matrixA is

A =
(

a2− σ1M11 b2− σ1M12

a1− σ1M21 b1− σ1M22

)
.
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Here

(M11,M12) =
∞∑

n=1

RnS+
∗

n (γ k1)(Q−n, T−n),

(M21,M22) =
∞∑

n=1

RnS−
∗

n (γ k2)(Q−n, T−n). (3.30)

CoefficientsQ−n andT−n are computed from the recursive relation (3.8) forC−n atB = (1, 0)

andB = (0, 1), respectively. On solution of (3.29) we can define all coefficients of the series
for 5

(s)

1 in (3.4), (3.5)C−n = Q−nC−1+ T−nC−2.

It follows from the recursive relation (3.8) thatC−n reduce asRn (R < 1), and from
(B6), (B7) thatSn are bounded. Therefore, the series in (3.30) converge asR2n/n, and we can
achieve the required accuracy of computations by using a finite number of terms.

For an incomingk2-wave the potential9(2) in the far field at the interface has the form

9(2)(x, d) = (1+ ᾱ2) e−ik2x (x →∞),

9(2)(x, d) = ᾱ1 e−ik1x + e−ik2x (x →−∞).

The vectorB is defined with use of the following two conditions:

(i) at x →∞ thek1-wave is absent;
(ii) the potential of thek2-wave atx → −∞ is equal to the potential of the incoming wave.
As a result we get a linear system (3.29), but with the vectorC = (0,−e−γ k2).

For an incomingk3-wave the potential9(2) in the far field at the interface has the form

9(2)(x, d) = eik3x (x →∞),

9(2)(x, d) = (1+ ᾱ3) eik3x + ᾱ4 eik4x (x →−∞). (3.31)

Unknown coefficientsC1, C2 for 5
(2)

2 in (3.24) are determined after the fulfilment of the next
two conditions in the far field atx →∞:

(i) the potential ofk3-wave in (3.26) coincides with the potential of the incoming waves;
(ii) k4-wave is absent.

We obtain a system of linear equations to determine the vectorD = (C1, C2)

FD = G, (3.32)

where the vectorG = (−e−γ k3, 0), and the matrixF has the form

F =
(

σ2M31+ a3 σ2M32+ b3

σ2M41+ a4 σ2M42+ b4

)
,

(M31,M32) =
∞∑

n=1

RnS+n (γ k3)(Vn,Wn), (M41,M42) =
∞∑

n=1

RnS+n (γ k4)(Vn,Wn).
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CoefficientsVn andWn are computed according to the recursive relations (3.16) forCn at
D = (1, 0) andD = (0, 1), respectively. On solution of (3.32) we can define all coefficients
of the series for5(s)

2 Cn = VnC1+WnC2.
For an incomingk4-wave, we obtain the potential9(2) in the far field on the interface from

(3.31) by replacingk4 with k3, andᾱ4 with ᾱ3. We get the linear system (3.32), but with the
vectorG = (0, e−γ k4).

Upon computation of the vectorsB (D) for wavesk1,2 (k3,4), we can determine completely
the diffraction potentials. The coefficientC0 is determined from the conditions1+ s2 = 0 (see
(3.25), (3.26)), andB0 does from equation

K1+K2 + 2γ ν̄[B0− 2C0(1+ ε)] = 0.

This equation is derived on substituting (3.3) in (3.6) and matching the coefficients in front of
terms which are independent ofθ .

3.2. THE EXCITING FORCES

Computation of exciting forces (2.11) in dimensionless variables is performed according to
the formulas

Fej = Fej

ρ2η0ḡa
=
√

2+ ε

εk

∫ 2π

0

[
i Fr

∂ϒ(2)

∂ϕ

∂9(2)

∂ϕ
−√ν9(2)

]
nj dϕ

=
√

2+ ε

εk
(i FrYj −√νXj), (j = 1, 2)

where Fr= U/
√

ag is the Froude number and

Xj =
∫ 2π

0
9(2)nj dϕ = −

∫ 2π

0
9(2)λ−1nj dθ, (3.33)

Yj =
∫ 2π

0

∂ϒ(2)

∂ϕ

∂9(2)

∂ϕ
nj dϕ = −

∫ 2π

0

∂ϒ(2)

∂θ

∂9(2)

∂θ
λnj dθ, (3.34)

n1 = − cosϕ = γ cosθ

sinθ − d
, n2 = − sinϕ = d sinθ − 1

d − sinθ
, (3.35)

λ(θ) = ∂θ/∂ϕ|ρ=1 = (sinθ − d)/γ. (3.36)

The steady potential is given in Appendix A. On the cylinder surface,ρ = 1, and using
(A1) we have

ϒ(2) = 2Re

{ ∞∑
n=1

Zn einθ

}
=
∞∑

n=1

(Zn einθ + Z∗n e−inθ ). (3.37)

The quantitiesXj andYj are computed separately for the cases of incoming waves with
k = k1,2 andk = k3,4. For incoming waves withk = k1,2 on the cylinder surface we have

9(2) = 2
∞∑

n=1

C−n e−inθ . (3.38)
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Substituting (3.37) and (3.38) in (3.33), (3.34), we obtain

X1 = 2γ 2
∞∑

n=1

C−n

∫ 2π

0

cosθ

(d − sinθ)2
e−inθ dθ = −4πγ

∞∑
n=1

(−i)n+1nC−nR
n, (3.39)

X2 = 2γ

∞∑
n=1

C−n

∫ 2π

0

1− d sinθ

(d − sinθ)2
e−inθ dθ = −4πγ

∞∑
n=1

(−i)nnC−nR
n, (3.40)

Y1 = 2
∫ 2π

0

∞∑
n=1

nC−n e−inθ ·
∞∑

n=1

n(Zn einθ − Z∗n e−inθ ) cosθ dθ

= 2π

∞∑
n=1

n(n+ 1)(C−nZn+1 + C−n−1Zn),

Y2 = 2

γ

∫ 2π

0

∞∑
n=1

nC−n e−inθ ·
∞∑

n=1

n(Zn einθ − Z∗n e−inθ )(1− d sinθ) dθ

= 2π

γ

∞∑
n=1

n[2nC−nZn − id(n+ 1)(C−nZn+1 − C−n−1Zn)].

Evaluations of the integrals in (3.39), (3.40) are presented in [7].
For incoming waves withk = k3,4 on the cylinder surface we have

9(2) = 2
∞∑

n=1

Cn einθ ,

X1 = iX2 = −4πγ

∞∑
n=1

in+1nCnR
n, Y1 = 2π

∞∑
n=1

n(n+ 1)(CnZ
∗
n+1 + Cn+1Z

∗
n),

Y2 = 2π

γ

∞∑
n=1

n[2nCnZ
∗
n + id(n+ 1)(CnZ

∗
n+1− Cn+1Z

∗
n)].

The series arising in the computation of the exciting forces converge asR2n (R < 1).

In Tables 1, 2 we give results forF ej on the cylinder submerged ath = 2a and for Fr= 0·6
(homogeneous fluid with free surface,i.e. ε →∞) andFr = U/

√
ḡa = 0·6 (two-layer fluid

with ε = 0·03), respectively. This value of the Froude number was chosen because, within the
rangek0a 6 3, there are all possible incoming waves. For the wave coming from the right,
the critical point exists atk0a ' 0·11915 (τ̄ = 1

4). For the wave coming from the left, the
behaviour of the exciting forces is more complex. Whenk0 is small, we havek0a = k2. As
the wave frequency increases,k0 reaches the critical point atk0a ' 0·69444 that correspond
U = cg. The amplitudes of the forces vanish and the phase difference changes significantly
at this critical wavenumber. But the problem will not become supercritical ask0 increases
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Diffraction of internal waves by a submerged circular cylinder263

further. This is becauseω in Equation (2.1) will decrease whenk0a > 0·69444 and the flow
is again subcritical, but withk0a = k1. Whenk0a ' 2·77778, we haveω = 0 (U = cp).
At this wavenumber the real parts of both exciting forces have discontinuities at which the
absolute values are continuous, but the signs change. At greater wavenumbers the incident
wave is coming from the left in the moving system, and we havek0a = k3. Only when
k0a ' 4·04752(τ̄ = 1

4), does the flow become supercritical. However, this has no effect on
the submerged circular cylinder.

Similar results for a homogeneous fluid with free surface at Fr= 0·4 are given in [4].
Results are only listed up tok0a = 1 with step 0·05. The exciting forces were normalized
asπF̄ej ek0h/(ak0). Comparison of numerical results [4] with results of our solution shows a
relative difference of less than 1%. Furthermore, in [2], [4] it was pointed out that the exciting
forces are continuous at the critical pointτ = 1

4. Our results confirm this statement for the
two-layer infinite fluid atτ̄ = 1

4.

4. A circular cylinder submerged in the upper layer

Having performed the changey = y1 − d, let us transfer the origin of coordinates to the
cylinder center. The solution of this problem repeats in many aspects the reasonings of Section
3 and, therefore, will be given here in brief.

Instead of (3.1), the conformal mapping is now given by

w = i + Rz

R − iz
. (4.1)

The upper layer is contained in the annular regionR < |w| < 1, the lower layer is contained
in the circular region|w| < R.

The solution of the steady problem (2.3)–(2.6) is described in Appendix A.

4.1. THE DIFFRACTION POTENTIALS

The potentials9(s) are presented as the series

9(1) =
∞∑

n=−∞
Cn(ρ

n + ρ−n) einθ , 9(2) =
∞∑

n=−∞
Bnρ

|n| einθ .

Results obtained in Section 3 demonstrate that the constantsB0 andC0 can be taken zero for
calculation of the exciting forces. Using the kinematic boundary condition in (2.8), we express
the coefficientsBn throughCn and write the potentials in the form (3.3), where now

5
(1)
1 (ρ, θ) =

∞∑
n=1

C−n(ρ
n + ρ−n) e−inθ , 5

(1)
2 (ρ, θ) =

∞∑
n=1

Cn(ρ
n + ρ−n) einθ , (4.2)

5
(2)
1 (ρ, θ) =

∞∑
n=1

C−nR
−
n R−nρn e−inθ , 5

(2)
2 (ρ, θ) =

∞∑
n=1

CnR
−
n R−nρn einθ . (4.3)

In the variablesρ, θ the dynamic condition at the interface has the form (3.6) as before,
but now in (3.7)

∂ρ

∂y
= −R

∂θ

∂x
= R

γ
(1− sinθ). (4.4)
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By substituting the representation for9(1,2) as a sum (3.3) of the series (4.2), (4.3) in (3.6)
and using (4.4), we obtain a recursive relation for the series coefficients.

We consider the solution for5(1,2)
1 (case 1) and5

(1,2)
2 (case 2) in its own right.

(a)Case 1.The recursive relations forC−n are

C2−n

τ2

2νγ
(n− 2)(n− 1)P̃n−2

+C1−ni(n− 1)

{[
τ

νγ
(2n− 1)− 2

]
τ P̃n−1 − εR−n−1

}

+C−n

[(
4nτ − 2νγ − 3n2τ2

νγ

)
P̃n + 2εnR−n

]

+C−n−1i(n+ 1)

{[
2− τ

νγ
(2n+ 1)

]
τ P̃n+1 + εR−n+1

}

+C−n−2
τ2

2νγ
(n+ 2)(n+ 1)P̃n+2 = 0,

where

P̃n = εRn − (2+ ε)R−n.

Once the coefficientsC−1 andC−2 have been defined, the series for5
(1,2)

1 are fully determined.
We introduce additional functionsG1(ξ) andG2(ξ) as in (3.9). For their sum with weights

W̃1(ξ) = εG1(ξ)− (2+ ε)G2(ξ) (4.5)

we obtain a differential equation

τ̄2

2ν̄γ
(1− iξ)4W̃ ′′1 − i(1− iξ)2

[
τ̄2

ν̄γ
(1− iξ)− 2τ̄ − 1

]
W̃ ′1− 2ν̄γ W̃1

= K̃1− 2i(1− iξ)2G′1, (4.6)

where

K̃1 = τ̄2

ν̄γ
C−2P̃2− iC−1

[(
τ̄

ν̄γ
− 2

)
τ̄ P̃1− (2+ ε)R−1

]
. (4.7)

The general solution of (4.6) is

W̃1 = ν̄

τ̄2(k3− k4)

∞∑
n=1

C−nR
n[In(γ k4, ξ)− In(γ k3, ξ)] − c1 exp

(
− 2γ k4

1− iξ

)

+c2 exp

(
− 2γ k3

1− iξ

)
− K̃1

2γ ν̄
,

whereIn is defined in (3.14),k3,4 are given in (3.21), andc1,2 are constants of integration

(c1, c2) = (2+ ε)(c̃1 e2γ k4, c̃2 e2γ k3),
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c̃1 = ã3C−1+ b̃3C−2, c̃2 = ã4C−1+ b̃4C−2,

ãq = 1

(2+ ε)(k3− k4)

(
iP̃1

2γ
− ṽ1kq

ν̄

)
, b̃q = − kqṽ2

ν̄(2+ ε)(k3− k4)
(q = 3, 4),

ṽ1 = − i

2γ

[(
τ̄

ν̄γ
− 2

)
τ̄ P̃1− (2+ ε)R−1

]
, ṽ2 = τ̄2

2ν̄γ 2
P̃2. (4.8)

(b) Case 2.
The solution for5(1,2)

2 is derived in a similar way. The recursive relations forCn are

Cn−2
τ2

2νγ
(n− 2)(n− 1)P̃n−2

−Cn−1i(n− 1)

{[
2+ τ

νγ
(2n− 1)

]
τ P̃n−1 − εR−n−1

}

−Cn

[(
4nτ + 2νγ + 3n2τ2

νγ

)
P̃n − 2εnR−n

]

+Cn+1i(n+ 1)

{[
τ(2n+ 1)

νγ
+ 2

]
τ P̃n+1 − εR−n+1

}

+Cn+2
τ2

2νγ
(n+ 2)(n+ 1)P̃n+2 = 0, (4.9)

OnceC1 andC2 have been defined, the series for5
(1,2)

2 are completely determined due to
(4.9). To defineC1 andC2 we introduce additional functionsF1(ξ) andF2(ξ) as in (3.17). For
their sum with weights

W̃2(ξ) = εF1(ξ)− (2+ ε)F2(ξ) (4.10)

we obtain a differential equation

τ̄2

2ν̄γ
(1+ iξ)4W̃ ′′2 + i(1+ iξ)2

[
τ̄2

ν̄γ
(1+ iξ)+ 2τ̄ − 1

]
W̃ ′2− 2ν̄γ W̃2

= K̃2+ 2i(1+ iξ)2F ′1, (4.11)

where

K̃2 = τ̄2

ν̄γ
C2P̃2 + iC1

[(
τ̄

ν̄γ
+ 2

)
τ̄ P̃1− (2+ ε)R−1

]
.

The solution of Equation (4.11) is

W̃2 = ν̄

τ̄2(k1− k2)

∞∑
n=1

CnR
n[Jn(γ k1, ξ)− Jn(γ k2, ξ)] + c3 exp

(
− 2γ k2

1+ iξ

)

+c4 exp
(
− 2γ k1

1+ iξ

)
− K̃2

2γ ν̄
,
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whereJn is defined in (3.22),k1,2 are given in (3.13), andc3,4 are the constants of integration

(c3, c4) = (2+ ε)(c̃3 e2γ k2, c̃4 e2γ k1),

c̃3 = ã1C1+ b̃1C2, c̃4 = −(ã2C1+ b̃2C2),

ãq = 1

(2+ ε)(k1− k2)

(
iP̃1

2γ
+ ṽ3kq

ν̄

)
, b̃q = kqṽ2

ν̄(2+ ε)(k1− k2)
(q = 1, 2),

ṽ3 = i

2γ

[(
τ̄

ν̄γ
+ 2

)
τ̄ P̃1− (2+ ε)R−1

]
,

ṽ2 is defined in (4.8).
Let ξ = Rρ−1 e−iθ for W̃1(ξ) in (4.5) andξ = Rρ−1 eiθ for W̃2(ξ) in (4.10). Then similar

to (3.23) we can write

W̃1 =
∞∑

n=1

C−n[ε(R2n − 1)− 2]ρ−n e−inθ ,

W̃2 =
∞∑

n=1

Cn[ε(R2n − 1)− 2]ρ−n einθ . (4.12)

Let us consider a behaviour of the upper layer potential9(1) at the interface. According to
(4.2) and (4.3) atρ = R we get

5
(1)
1 (R, θ) =

∞∑
n=1

C−nR
+
n e−inθ , 5

(1)
2 (R, θ) =

∞∑
n=1

CnR
+
n einθ .

Using (4.12) we have

5
(1)

1 (R, θ) = [2(1+ ε)G̃1− W̃1]/(2+ ε),

5
(1)

2 (R, θ) = [2(1+ ε)F̃1− W̃2]/(2+ ε).

By applying the properties of integral functionsJn(β, ξ) (see Appendix B), we determine the
behaviour of5(1)

1,2 at θ → π/2 (ξ → i), which is equivalent to|x| → ∞. As a result the

potentials5(1)
1,2 at |x| → ∞ can be represented in the form

5
(1)

1 = (σ̃1Ã4+ c̃1) ek4(ix−y−R) − (σ̃1Ã3 + c̃2) ek3(ix−y−R),

5
(1)
2 = (σ̃2Ã2) e−k2(ix+y+R) − (σ̃2Ã1 + c̃4) e−k1(ix+y+R),

where

Ãq =
∞∑

n=1

CnR
nSn(γ kq) (q = 1, 2), Ãq =

∞∑
n=1

C−nR
nS∗n(γ kq) (q = 3, 4),
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σ̃1,2 = 1

(2+ ε)
√

1± 4τ̄
.

Derivation of a final solution for each of the possible incoming waves is similar to that in
Section 3.1. The condition in the far field from which the coefficientsC1,2 are determined for
wavesk1,2 andC−1,−2 for wavesk3,4 are the same those as given in Section 3.1 for a relevant
wavekq (q = 1, 2, 3, 4).

4.2. THE EXCITING FORCES

Computation of exciting forces (2.11) in dimensionless variables is performed according to
formulae

F̃ej = Fej

ρ1η0ḡa
=
√

2+ ε

εk

∫ 2π

0

[√
ν9(1) − i Fr

∂ϒ(1)

∂ϕ

∂9(1)

∂ϕ

]
nj dϕ

=
√

2+ ε

εk
(
√

νX̃j − i FrỸj ) (j = 1, 2)

where

X̃j =
∫ 2π

0
9(1)nj dϕ = −

∫ 2π

0
9(1)λ−1nj dθ,

Ỹj =
∫ 2π

0

∂ϒ(1)

∂ϕ

∂9(1)

∂ϕ
nj dϕ = −

∫ 2π

0

∂ϒ(1)

∂θ

∂9(1)

∂θ
λnj dθ,

n1 = γ cosθ/(d − sinθ), n2 = (1− d sinθ)/(d − sinθ).

The expression forλ is presented in (3.36).
The solution for the steady potentialϒ(1) is given in Appendix A and on the cylinder

surface atρ = 1 by use of (A12) is

ϒ(1) = 2Re

{ ∞∑
n=1

Zn einθ

}
=
∞∑

n=1

(Zn einθ + Z∗n e−inθ ). (4.13)

For incoming waves withk = k1,2 we obtain

X̃1 = iX̃2 = 4πγ

∞∑
n=1

in+1nCnR
n, Ỹ1 = −2π

∞∑
n=1

n(n+ 1)(CnZ
∗
n+1 + Cn+1Z

∗
n),

Ỹ2 = −2π

γ

∞∑
n=1

n[2nCnZ
∗
n + id(n+ 1)(CnZ

∗
n+1− Cn+1Z

∗
n)].

For incoming waves withk = k3,4

X̃1 = −iX̃2 = 4πγ

∞∑
n=1

(−i)n+1nC−nR
n,

Ỹ1 = −2π

∞∑
n=1

n(n+ 1)(C−nZn+1 + C−n−1Zn),
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Table 1. Exciting forces on a cylinder under a free surface in a homogeneous fluid withh = 2a and Fr= 0·6.

Wave from the left Wave from the right

k0a Re(F̄e1) Im(F̄e1) Re(F̄e2) Im(F̄e2) Re(F̄e1) Im(F̄e1) Re(F̄e2) Im(F̄e2)

0·1 −0·25637 −0·94515 1·18401 −0·29152 0·02296 0·58647 0·42760 −0·01056

0·2 −1·46555 −1·13977 1·38610 −1·69758 0·07849 0·92148 0·73267 −0·05413

0·3 −1·44796 −0·09611 0·15285 −1·66927 0·12495 1·07288 0·88160 −0·09345

0·4 −0·84911 0·14583 −0·14098 −0·97405 0·14468 1·11097 0·92840 −0·11135

0·6 −0·18382 0·05175 −0·05261 −0·20963 0·12835 1·02643 0·87063 −0·09949

0·8 −0·16072 −0·04384 0·04695 −0·18186 0·08929 0·86569 0·73702 −0·06729

1·0 −0·39600 −0·11427 0·12330 −0·44947 0·05554 0·69575 0·59118 −0·03928

1·4 −0·58931 −0·51450 0·58497 −0·67586 0·01819 0·41071 0·34393 −0·00908

1·8 −0·08601 −0·46135 0·52989 −0·09416 0·00529 0·22307 0·18192 0·00021

2·2 −0·01065 −0·22394 0·25740 −0·00841 0·00140 0·11378 0·08913 0·00209

2·6 −0·00201 −0·11445 0·13217 0·00012 0·00028 0·05498 0·04053 0·00197

3·0 0·00034 −0·05941 −0·06912 0·00112 −0·00004 0·02519 0·01686 0·00147

Table 2. Exciting forces on a cylinder under a lower fluid withh = 2a andFr= 0·6 for a two-layer fluid with
ε = 0·03.

Wave from the left Wave from the right

k0a Re(F̄e1) Im(F̄e1) Re(F̄e2) Im(F̄e2) Re(F̄e1) Im(F̄e1) Re(F̄e2) Im(F̄e2)

0·1 −0·08339 −0·72116 0·86090 −0·09020 0·01111 0·56803 0·45256 −0·00589

0·2 −0·47209 −1·26927 1·45430 −0·52292 0·03925 0·91295 0·77453 −0·02934

0·3 −1·08303 −1·19839 1·35697 −1·19792 0·06528 1·09373 0·95123 −0·05232

0·4 −1·19585 −0·57655 0·65623 −1·31912 0·07894 1·16386 1·02576 −0·06491

0·6 −0·35321 0·00566 −0·00102 −0·38854 0·07488 1·12141 1·00145 −0·06220

0·8 −0·30473 −0·08615 0·09255 −0·33452 0·05425 0·97334 0·87385 −0·04431

1·0 −0·62632 −0·39766 0·43274 −0·68837 0·03456 0·79950 0·71892 −0·02708

1·4 −0·24286 −0·71281 0·78291 −0·26644 0·01159 0·48983 0·43916 −0·00729

1·8 −0·02959 −0·39554 0·43520 −0·03037 0·00342 0·27680 0·24615 −0·00078

2·2 −0·00463 −0·20586 0·22702 −0·00338 0·00093 0·14829 0·13024 0·00076

2·6 −0·00093 −0·10798 0·11961 0·00009 0·00021 0·07639 0·06597 0·00088

3·0 0·00017 −0·05636 −0·06281 0·00053 0·00001 0·03815 0·03223 0·00069

Ỹ2 = −2π

γ

∞∑
n=1

n[2nC−nZn − id(n+ 1)(C−nZn+1 − C−n−1Zn)].

In Table 3 we give results for̃Fej on the cylinder located above the interface ath = 2a

and forFr = 0·6 with ε = 0·03. Critical values ofk0a fully correspond to those existing
for results given in Tables 1 and 2 (see Section 3.2). Using the results given in Tables 1–
3, we can calculate both the amplitudes and the phase differences of exciting forces. The
qualitative behaviours of the amplitudes of exciting forces are similar to each other in the all
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Table 3. Exciting forces on a cylinder in upper fluid withh = 2a and Fr = 0·6 for a two-layer fluid with
ε = 0·03.

Wave from the left Wave from the right

k0a Re(F̃e1) Im(F̃e1) Re(F̃e2) Im(F̃e2) Re(F̃e1) Im(F̃e1) Re(F̃e2) Im(F̃e2)

0·1 −0·07995 −0·71536 −0·85275 0·08636 0·01077 0·56749 −0·45328 0·00573

0·2 −0·45010 −1·26055 −1·44237 0·49792 0·03809 0·91266 −0·77572 0·02854

0·3 −1·04698 −1·21999 −1·37897 1·15666 0·06343 1·09428 −0·95324 0·05094

0·4 −1·19190 −0·61678 −0·69968 1·31328 0·07680 1·16538 −1·02865 0·06327

0·6 −0·36290 0·00143 −0·00359 0·39878 0·07300 1·12435 −1·00550 0·06076

0·8 −0·31295 −0·08996 −0·09666 0·34322 0·05296 0·97677 −0·87820 0·04335

1·0 −0·63111 −0·41712 −0·45373 0·69294 0·03376 0·80286 −0·72302 0·02652

1·4 −0·23212 −0·71169 −0·78078 0·25430 0·01133 0·49241 −0·44224 0·00716

1·8 −0·02843 −0·39378 −0·43272 0·02912 0·00334 0·27854 −0·24821 0·00078

2·2 −0·00448 −0·20536 −0·22619 0·00326 0·00091 0·14940 −0·13155 −0·00073

2·6 −0·00091 −0·10780 −0·11925 −0·00009 0·00021 0·07708 −0·06678 −0·00085

3·0 0·00016 −0·05627 0·06262 −0·00051 0·00001 0·03857 −0·03272 −0·00067

considered cases. However, the phase difference of about 180 degrees exists between heave
exciting forces on cylinder located in the upper and the lower layers.

5. Discussion

The explicit solution, which was obtained in [5] for surface-wave diffraction by a circular
cylinder without forward speed and then extended in [7], [8] for case of a two-layer fluid, is
presented in this work for the general case of internal wave diffraction in a uniform current
of a two-layer fluid. The solution is obtained in the form of rapidly converging series and
makes it possible to investigate relatively easily all the characteristics of the flow depending
on the parameters of the problem. The numerical results presented in Tables 1–4 are obtained
from only the nine first terms in the series. Further increase of the number of terms does not
change the results. The problem considered here is one constituent of the linear theory of
seakeeping. We think that the solution of the seakeeping problem for a body of an arbitrary
form is possible only with numerical methods. There arises the question about the estimation
of the accuracy of the numerical algorithms used. For this purpose, it is useful to have test
solutions of similar problems for bodies of simple geometry. Usually, for 2-D flows a circular
cylinder is such a body. For a two-layer fluid an effective numerical method of the solution
of a linear problem of seakeeping for a submerged body is the coupled finite-element method
(CFEM). This method was applied for steady flow by Sturova [11] and for radiation and
diffraction of internal waves by a submerged cylinder at forward speed by Sturova [10]. In the
first paper, the upper layer can be bounded by a rigid lid or free surface, in the second one by
only a rigid lid. The comparison of the numerical results obtained for a circular cylinder in an
unbounded two-layer fluid by CFEM and the given explicit solution showed fair agreement.
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Appendix A. The steady problem

The solution technique for the steady problem (2.3)–(2.6) is a multilateral replica of that used
in Sections 3, 4 for a diffraction problem appropriate to a cylinder located in the lower and
upper layer.

A.1. The cylinder in the lower layer

In dimensionless variables, using the conformal mapping (3.1), we write the potentialsϒ(s)

as the series

ϒ(1) = Re

{ ∞∑
n=1

ZnR
−
n R−nρn einθ

}
, ϒ(2) = Re

{ ∞∑
n=1

Zn(ρ
n + ρ−n) einθ

}
. (A1)

The notation is identical to that of Section 3.
In the coordinatesρ, θ the dynamic condition at the interface (2.6) has the form

∂2ϒε

∂θ2

(
∂θ

∂x

)2

+ ∂ϒε

∂θ

∂2θ

∂x2
+ εµ

∂ϒ(2)

∂ρ

∂ρ

∂y
= 0 (ρ = R),

where

ϒε = (1+ ε)ϒ(2) −ϒ(1), µ = ag/U2 = 1/Fr2.

The recursive relations for the coefficients in (A1) are

Zn−2(n− 2)(n− 1)Pn−2 − 2Zn−1i(n− 1)[(2n− 1)Pn−1 + εµγR−n−1]
−2Znn(3nPn + 2εµγR−n )+ 2Zn+1i(n+ 1)[(2n+ 1)Pn+1 + εµγR−n+1]
+Zn+2(n+ 2)(n+ 1)Pn+2 = 0. (A2)

The coefficientsZ1 and Z2 are determined from the radiation condition from which, far
ahead of the cylinder, the potentialsϒ(s) correspond the a uniform current. It is convenient
to introduce new functions

F̄1(ξ) =
∞∑

n=1

ZnR
nξn, F̄2(ξ) =

∞∑
n=1

ZnR
−nξn, (A3)

which are similar to those used in (3.17). For their sum with weights

W̄1(ξ) = εF̄1(ξ)+ (2+ ε)F̄2(ξ) (A4)

we obtain a differential equation

(1+ iξ)4W̄ ′′1 + 2i(1+ iξ)2(1+ iξ − µ̄γ )W̄ ′1 = K0− 4iµ̄γ (1+ ε)(1+ iξ)2F̄ ′1,

where

µ̄ = εµ/(2+ ε), K0 = 2{Z2P2+ iZ1[P1 − 2γ 2µ̄(1+ ε)]}.
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The general solution of this equation is

W̄ ′1 =
1

(1+ iξ)2

{
iK0

2β

(
1− exp

2iβξ

1+ iξ

)
− 2iβ(1+ ε)

[
2F̄1 +

∞∑
n=1

ZnR
nJn(β, ξ)

]

+c0 exp
−2β

1+ iξ

}
,

whereβ = γ µ̄, c0 is the constant of integration,Jn is defined in (3.22). Below, the deriva-
tive of W̄1 is used only. From (A4)W̄ ′1(0) = Z1P1 and we havec0 = Z1P1 e2β .

Let us consider the behaviour of thex-derivative ofϒ(2) at the interface

∂ϒ(2)

∂x

∣∣
y=d
= ∂ϒ(2)

∂θ

∂θ

∂x

∣∣∣∣∣ρ=R
= (1+ i eiθ )2

2γ

∞∑
n=1

nZnR
+
n ei(n−1)θ

= (1+ i eiθ )2

2γ (2+ ε)
(W̄ ′1+ 2F̄ ′1). (A5)

The latter equality in (A5) follows from the form of̄W ′1 at ξ = eiθ according to (A4). Using
the results of Appendix B, we obtain for|x| → ∞

∂ϒ(2)

∂x
= 1

2γ (2+ ε)

{
iK0

2β
+ expµ̄(ix + y − R)

×
[
Z1P1 − iK0

2β
− 2iβ(1+ ε)

∞∑
n=1

ZnR
nSn(β)

]}
. (A6)

From the radiation condition the wave motion can exist only downstream of the cylinder,i.e.

∂ϒ(2)/∂x →−1 (x →∞). (A7)

This means that the expression in square brackets in (A6) forx → ∞ must be zero. Using
(A7) for the remaining non-wave part, we have the following linear second-order system for
the definition ofZ1 andZ2

Z1

[
2iβ(1+ ε)

∞∑
n=1

AnR
nS+n (β)− P1

]

+Z22iβ(1+ ε)

∞∑
n=1

BnR
nS+n (β) = 2γ (2+ ε), (A8)

Z1[P1− 2γβ(2+ ε)] − Z2iP2 = 2γβ(2+ ε). (A9)

HereAn andBn are computed from the recursive relations (A2) atZ1 = 1, Z2 = 0 and
Z1 = 0, Z2 = 1, respectively. On solving (A8), (A9), we can define all coefficientsZn of the
series (A1)

Zn = AnZ1+ BnZ2. (A10)
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In the limiting casesµ̄ → 0 andµ̄ → ∞ the problem can be essentially simplified. At
µ̄→ 0 (Fr→∞) we have the problem of the uniform current of a weightless two-layer fluid
past a cylinder. The assumptionµ̄ → ∞ (Fr→ 0) is equivalent the change of the interface
by the solid plane. In both limiting cases to find the coefficientsZn in the recursive relations
(A2) we need to determineZ1 only (see [8] for more details).

Computation of the steady loads (2.10) is performed in the following way

F̄sj = Fsj

ρ2aU2
= 1

2

∫ 2π

0
|∇ϒ(2)|2nj dϕ = −1

2

∫ 2π

0

(
∂ϒ(2)

∂θ

)2

λnj dθ, (A11)

where (3.35), (3.36) have been used. The potentialϒ(2) on the cylinder surface is determined
in (3.37). We can easily evaluate the integral (A11)

F̄s1 = −π

∞∑
n=1

n(n+ 1)(ZnZ
∗
n+1+ Zn+1Z

∗
n),

F̄s2 = −π

γ

∞∑
n=1

n[2n|Zn|2+ id(n+ 1)(ZnZ
∗
n+1 − Zn+1Z

∗
n)].

These series converge asR2n (R < 1).

A.1. The cylinder in the upper layer

In dimensionless variables, using the conformal mapping (4.1), we may write the potentials
ϒ(s) as the series

ϒ(1) = Re

{ ∞∑
n=1

Zn(ρ
n + ρ−n) einθ

}
, ϒ(2) = Re

{ ∞∑
n=1

ZnR
−
n R−nρneinθ

}
. (A12)

The recursive relations for the coefficients in (A12) are as follows:

Zn−2(n− 2)(n− 1)P̃n−2 − 2Zn−1i(n− 1)[(2n− 1)P̃n−1 − εµγR−n−1]
−2Znn(3nP̃n − 2εµγR−n )+ 2Zn+1i(n+ 1)[(2n+ 1)P̃n+1 − εµγR−n+1]
+Zn+2(n+ 2)(n+ 1)P̃n+2 = 0. (A13)

All notations are identical to those of Section 4. To determine the coefficientsZ1 andZ2 we
introduce new functions (A3), and for their sum with weights

W̄2(ξ) = εF̄1(ξ)− (2+ ε)F̄2(ξ) (A14)

we obtain a differential equation

(1+ iξ)4W̄ ′′2 + 2i(1+ iξ)2(1+ iξ − µ̄γ )W̄ ′2 = K̄0+ 4iµ̄γ (1+ ε)(1+ iξ)2F̄ ′1,

where

K̃0 = 2{Z2P̃2 + iZ1[P̃1+ 2γ 2µ̄(2+ ε)]}.
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The solution forW̄ ′2 has the form

W̄ ′2 =
1

(1+ iξ)2

{
iK̃0

2β

(
1− exp

2iβξ

1+ iξ

)

+2iβ

[
2F̄1 +

∞∑
n=1

ZnR
nJn(β, ξ)

]
+ c̃0 exp

−2β

1+ iξ

}
,

where c̃0 is the constant of integration. From (A14)̄W ′2(0) = Z1P̃1 and we havec̃0 =
Z1P̃1 e2β.

Let us consider a behaviour of thex-derivative ofϒ(1) at the interface

∂ϒ(1)

∂x

∣∣∣∣
y=−d

= ∂ϒ(1)

∂θ

∂θ

∂x

∣∣∣∣∣ρ=R
= −(1+ i eiθ )

2γ

∞∑
n=1

nZnR
+
n ei(n−1)θ

= (1+ i eiθ )2

2γ (2+ ε)
[W̄ ′2− 2(1+ ε)F̄ ′1]. (A15)

The latter equality in (A15) follows from the form of̄W ′2 at ξ = eiθ according to (A14).
According to the radiation condition∂ϒ(1)/∂x → −1 at x → ∞ and we have the linear
second-order system for the definition ofZ1 andZ2

Z1

[
2iβ

∞∑
n=1

AnR
nS+n (β)+ P̃1

]
+ Z22iβ

∞∑
n=1

BnR
nS+n (β) = −2γ (2+ ε), (A16)

Z1[P̃1+ 2γβ(2+ ε)] − Z2iP2 = 2γβ(2+ ε). (A17)

HereAn andBn are computed from the recursive relations (A13) atZ1 = 1, Z2 = 0 andZ1 =
0, Z2 = 1, respectively. On solving (A16), (A17) with (A10), we can define all coefficients
of the series (A12).

Computation of the steady loads (2.10) is performed in the following way

F̃sj = Fsj

ρ1aU2
= −1

2

∫ 2π

0

(
∂ϒ(1)

∂θ

)2

λnj dθ.

The potentialϒ(1) on the cylinder surface is determined in (4.13) and the resultant expressions
are

F̃s1 = π

∞∑
n=1

n(n+ 1)(ZnZ
∗
n+1+ Zn+1Z

∗
n),

F̃s2 = π

γ

∞∑
n=1

n[2n|Zn|2+ id(n+ 1)(ZnZ
∗
n+1 − Zn+1Z

∗
n)].

In Table 4 we give the wave resistance and lift on a circular cylinder withh = 2a and
ε = 0·03. The Froude number is here defined asFn= U/

√
ḡh. For a homogeneous fluid with
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Table 4. Wave resistance and lift on a circular cylinder withh = 2a.

Homogeneous fluid Two-layer fluid withε = 0·03

with free surface cylinder in lower layer cylinder in upper layer

Fn −F̄s1 F̄s2 −F̄s1 F̄s2 −F̃s1 F̃s2

0·0 0·00000 0·22978 0·00000 0·22978 0·00000 −0·22978

0·2 0·00000 0·26426 0·00000 0·24713 0·00000 −0·24662

0·4 0·00724 0·45068 0·00332 0·33640 0·00322 −0·33314

0·6 0·65972 0·87870 0·28947 0·52419 0·27981 −0·51465

0·8 1·03160 0·14388 0·51431 0·18746 0·49886 −0·18874

1·2 0·34919 −0·37258 0·20619 −0·13184 0·20110 0·12309

1·6 0·10634 −0·31638 0·06431 −0·10596 0·06278 0·09815

2·0 0·03727 −0·26041 0·02239 −0·06969 0·02186 0·06267

∞ 0·00000 −0·16956 0·00000 −0·00290 0·00000 −0·00291

a free surface we havēg → g andFn→ Fn = U/
√

gh. The numerical results for steady
hydrodynamic loads in a homogeneous fluid are in a complete agreement with the results of
[4], where only the range 0·5 6 Fn 6 1 was considered. A graphic presentation of wave
resistance and lift on a circular cylinder located in the upper or lower layer of a two-layer fluid
was presented by Wu [12]. Our solution has confirmed these results.

The wave resistance as a function ofFn is shown for all three cases in Table 4. They are
seen to be similar. The behaviour of the lift depends on location of the cylinder above or below
the interface. Near a solid plane (Fn→ 0) the cylinder is attracted to the plane. In another
limiting case of weightless fluid the vertical forces are always directed downwards,i.e. the
sinking force acts on the body regardless of its location.

Appendix B. The special integrals

Through partial integration, the integralsJn in (3.22) are shown to be connected recurrently
starting from the two integralsJ0, J1. We have

Jn+1 = 2iJn − 2iβ

n
(2ξn + Jn)+ Jn−1 (n > 1), (B1)

J0 = 2
[
exp

(
2iβξ

1+ iξ

)
− 1

]
, (B2)

J1 = 4iβ exp
(
− 2β

1+ iξ

)[
iπsign

(
Im

2β

1+ iξ

)

− E1

(
− 2β

1+ iξ

)
− Ei(2β)

]
+ iJ0. (B3)

We have used the standard definitions of the exponential integrals Ei andE1 as given by
Abramowitz and Stegun [13]). The functionE1 has a branch cut along the negative real axis.
Assumingξ = R/w∗, we obtain:

166190.tex; 5/09/1996; 12:53; p.26



Diffraction of internal waves by a submerged circular cylinder275

for a cylinder located in the lower layer, according to (3.1)

1

1+ iξ
= 1

2γR
(1− iRx − Ry),

iξ

1+ iξ
= 1

2γ
(ix + y − R); (B4)

for a cylinder located in the upper layer, according to (4.1)

1

1+ iξ
= 1

2γR
(1+ iRx + Ry),

iξ

1+ iξ
= − 1

2γ
(ix + y + R). (B5)

Defining the new functionsSn(β, ξ) by formulae

Jn(β, ξ) = exp

(
2iξβ

1+ iξ

)
Sn(β, ξ)− 2in,

we have from (B1)–(B5) at|x| → ∞ (ξ → i, w→ R)

Sn+1 = Sn−1 + 2i(1− β/n)Sn, (B6)

S0 = 2, S1 = 2i + 4β e−2β[δπ sign(x)− i Ei(2β)], (B7)

whereδ = +1 andδ = −1 for the cylinder located in the lower and upper layers, respectively.
From (B6), (B7) it is evident that at|x| → ∞ for the given location of the cylinder, theSn

depend only onβ and sign(x). Here we use the notationS±n (β), where the upper signs ‘+’
and ‘−’ correspond to sign(x).
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