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Abstract. Diffraction of internal waves by a submerged body in a uniform current of a two-layer fluid is consid-
ered. The layers are infinitely deep, and the flows are two-dimensional. The linearized potential theory is used for
the inviscid and incompressible fluid. The solution for the circular cylinder, which is either below or above the
interface, is given in the form of rapidly converging series. This is achieved through the use of certain recursive
relations. Numerical results are provided for the exciting forces, wave resistance and lift which may be useful in
testing numerical methods used for the study of internal wave diffraction by a submerged body of arbitrary form.
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1. Introduction

Sea-wave propagation in the presence of different underwater obstacles and diffraction effect
are matters of great importance for water engineering and underwater navigation. The problem
of wave scattering by a submerged body has been investigated in detail for regular linear
surface waves; however, significant scattering of internal waves may occur when underwater
objects are placed near the region of high-gradient density. The simplest example of stratified
fluid is the two-layer fluid. A particular case is a homogeneous fluid with a free surface, as the
air density is assumed negligible compared with the water density.

The linear problem of surface-wave diffraction was studied both for a restricted and uni-
formly moving submerged body. This problem belongs to the linear theory of seakeeping.
In the two-dimensional case the linear theory of seakeeping has been studied in detail for a
circular cylinder submerged in deep water.

Grue and Palm [1], and then Grue [2] pioneered the solution of the radiation and diffrac-
tion problems of a submerged circular cylinder in a uniform current. They used the source-
distribution method. Almost the same problem was considered by Kashavadi[3], but
they used the integral-equation method for the velocity potential on the body surface and
the first-order approximation for the steady potential: the infinite-fluid solution valid for a
‘deeply’ submerged body. The multipole expansion method was recently adopted by Wu [4].
In his paper the numerical results of the steady, radiation and diffraction loads are tabulated.
In principle, in all above-mentioned papers the inversion of the infinite matrix was required
for obtaining the final results.

In contrast to these methods, Mehlum [5] obtained an explicit solution in the form of
rapidly converging series for wave diffraction by a submerged cylinder without forward speed.
The practical computation of the velocity potential is reduced almost to hand calculations. A
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similar method was proposed by Sretensky [6] for the steady problem on a uniformly moving
submerged circular cylinder. Unfortunately, his paper appeared in a relatively inaccessible
periodical and has remained practically unknown.

The results of [5] were extended to the two-layer infinite fluid for the diffraction prob-
lem without forward speed by Khabakhpasheva [7], and, later on, for the steady problem by
Khabakhpasheva [8]. In both cases a circular cylinder is in the lower layer.

The aim of the present paper is to derive an explicit solution for internal wave diffraction
by a circular cylinder located under or above the interface in a uniform current. The paper is
organized as follows. Section 2 introduces the governing equations. In Section 3 the diffraction
potentials and exciting forces for the cylinder submerged in the lower layer are presented. In
Section 4 similar results are obtained for a cylinder in the upper layer. The tables of exciting
forces for the homogeneous and two-layer fluid are given. For determining the exciting forces
in a diffraction problem with forward speed one needs a solution of the steady problem too.
Appendix A gives a brief solution of the steady problem for a cylinder both in the lower layer
and in the upper layer. The tables of the wave resistance and lift are presented. In Appendix B
the details of the special integrals used here are given.

2. Governing equations

Let a Cartesian coordinate system be taken withaifraxis directed along an equilibrium
position of the interface in the direction of forward spdédperpendicular to a cylinder axis,

and theyg-axis pointing vertically upwards. The coordinate system moves with the body at
the same speed. In the undisturbed state, the upper fluid layer with the deneitgupies

the domainjxg| < o0, yo > 0, and the lower one with the density = p1(1+ ¢) (¢ > 0),

the domain |xg] < o0, yop < 0. We assume the fluid to be inviscid and incompressible,
and the disturbance of the interface to be small. The flows in each layer are potential. For a
time-periodic incoming wave at a frequeney the total velocity potential can be written as

®® (x0, yo, 1) = —Uxo + UD® (x0, yo) + Re{no[®§’ (x0, yo) + DL (x0, yo)] €},

whered® is the steady potential due to the unit forward spd@éﬁ); and¢(f) are the potentials

of the incident and diffracted waves, respectively; apds the amplitude of the incoming
wave. The superscriptis equal to 1 for the upper layer and 2 for the lower one. The encounter
frequencyw is obtained from

w=|wgtkU|, ko=wi/g, §=¢eg/+e), (2.1)

whereg is the acceleration due to gravity; the sigas and ‘—’ correspond to waves travelling
from the right and from the left, respectively.
The incident potentials are

@y’ = iVe/kodt expEikoxo). 95 (v0) =~ 97 (o) =€or. (22)

Based on the assumptions of linear potential flow theory, the governing equations for the
steady potential are

V2o = 520D /9x2 + 20T /9y5 =0 (yo > 0), V2@ =0 (yp<0) (2.3)
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with boundary conditions
Vol 0 (yp — 00), VO? 50 (yo— —00), (2.4)
30 /dn =ny  ((x0, yo) € S), (2.5)

whereS is the surface of the cylinde$,/on denotes the normal derivative and is the xo-
component of the unit normal vector= (n1, n,) pointing into the body. Here = 1(¢ = 2)

if the cylinder is in the upper (lower) layer. The linearized dynamic and kinematic boundary
conditions on the interface are

3?20?9200 gg gD 3D 9@
(1 + 8) 2 - 2 + _2— = 07 = )
axg 9x§ U? dyo EAY o

(y=0), (2.6)

respectively. We also adopt the radiation condition which assumes that there is no wave due
to steady potentials far in front of the cylinderxat> oc.
The diffraction potentials satisfy equations similar to (2.3)

V2ol =0 (y>0, V2P =0 (y<0)
with boundary conditions

Vol -0 (yo— 00), Vo -0 (yo— —o0),

30 /9n = -0 /dn  ((x0. yo) € ), (2.7)
) 2 o
U— —io) [A+e)dY — o] +eg—21 =0,
0xo 9o
90" 9o
1 _ 1 (yo = 0). (28)
dyo dyo

The radiation condition fo!" states that a wave travelling in the direction of the forward
speed, and with its group velocity larger than the forward speed, propagates teo, and
otherwise the waves propagatexte> —oo.

It is convenient to introduce new unknown functiong’ andw®), where

TO(xg, yo) = DO —x0. W (x0, yo) = ¢ exp(tikoxo) — iv/ko/Z DY (2.9)

According to the boundary conditions (2.5) and (2.7) both these functions have zero normal
derivatives on the surface of the cylinder. The dynamic boundary conditions on the interface
for Y& andw® have the same form as (2.6) and (2.8)d8P and®!”, respectively, because
the potentials of the incident Wav¢§) in (2.2) satisfy (2.8).

After the steady and diffraction potentials have been obtained, the steady and exciting
forces can be computed from (Newman [9])

) 9@ 110w (@))2
Fj = —p,U N\ o = 5|VODI|% ) n; ds, (2.10)
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Figure 1. Submerged circular cylinder under an interface.

Fj = pyo /[iw@gﬁ +0) + UV(P? — xo) V(D + &) n; ds
N

= pyNo /kif(iUvW)V\p(q)—w\p@)n, ds, (j=12), (2.11)
0JS

whereF; is the wave resistance;; is the lift, F,; andF,, indicate the horizontal and vertical
exciting forces.

The centre of the cylinder is located wt = —h(yo = k) for the body submerged in the
lower (upper) layer. Witla being the radius of the cylinder, we have- a. We can now scale
the coordinates so that the dimensionless cylinder radius is equal to unity:

x =xp/a, yi1=>yYo/a, d=h/a>1 k=koa.

3. Accircular cylinder submerged in the lower fluid

Let us transfer the origin of the coordinates into the cylinder center obeying the translation
y = y1 + d. The geometry of flow is shown in Figure 1. We introduce the new coordinates
w =u +iv = p €% by means of a conformal, bilinear mapping

i — Rz
w: . 9y
R+iz

(3.1)

wherez =r €Y =x+iy, R=d—-y, y=+d?—-1

The fluid is now contained in the circular region, shown in Figure 2. The cylinder surface is
the circlejw| = 1, while the interface is the circlav| = R. The upper layer is contained in the
circular regionjw| < R, and the lower layer is contained in the annular regior |w| < 1.
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A

Figure 2. The image of the flow region shown in Figure 1.

Figure 1 and Figure 2 show the correspondence of certain points of the plandsv. The
specific feature of the mapping (3.1) is that all points at infipity> co are mapped onto one
pointw — iR (cf. points E, G, H, K in Figure 1 and Figure 2).

The steady problem solution for this case is presented in detail by Khabakhpasheva [8]. In
Appendix A the basic results are briefly described with corrections of some inaccuracies.

3.1. THE DIFFRACTION POTENTIALS

Let us express the potentials®) representing the sum of the incident and diffracted potentials

as the series based on the system of fundamental solutions of the Laplace equation for annular
regions, taking into account that the normal derivativ® on the cylinder surface is equal to

zero and¥ Y is the analytical function in the circlev| < R

w® — Z B,,,o'"' g w@ — Z Co(p" +p™) gt (3.2)

n=—oo n=—oo

Applying the kinematic boundary condition in (2.8), we can express the coefficknts
throughC,, atn # 0. The potentials in (3.2) can be represented as

v =P+ (s=1,2), (3.3)

where

o]
M’ (p.0) = Bo/2+ Y C_,R, R"p" e,
n=1

M5 (p.0) = Bo/2+ Y C,R;R™"p" ", (3.4)
n=1



254 T. 1. Khabakhpasheva and I. V. Sturova

o0
NP (p,0) = Co+ Y Calp"+p ") e,
n=1

NP (p.0) = Co+ Y Cu(p" +p™) ", (3.5)
n=1

Rn— — Rl’l _ R—I’l.

The dynamic boundary condition on the interface (2.8) has the form

2 [ 82w, [96\2 9V, 9% AW, 90
— + —2it — — vy,

v | 962 \ax 30 9x2 30 dx
ENACK)
2% _0 (p=nr), (3.6)
ap dy
where

U, =(1+)v? —y®,

0 a9 R .
@» _ —R— = —(sinf — 1),
ay ax y

920 1 .
—=—-(3—-c0Sd —4sinb), 3.7
2 = 2,20 ) (37)

t=Uw/g, v=ow’a/g.

Substituting (3.3) in (3.6) and matching the coefficients in front of all terrfisree get the
system of recursive relations to determine the coefficients in the expansion (3.2).

It is convenient to consider the solution foi;” (case } andI1S’ (case 3 further in its
own right.

(a)Case 1.
The recursive relations for the coefficierdis,, are

.[2
CZ—n (I’l - 2) (l’l - 1) Pn—Z
2vy

+Cl—ni(n - l) {|:2+ i(Zn - 1)] TPn—l + 8Rn_—l}
vy

3n272 B
P, + 2¢nR,
vy

—C_, [<4nt + 2vy +

~C_yai(n+1) { [2 + %(Zn + 1)] TPy + sR,:H}

2
+c_n_22’U—y(n +2n+DP=0 (1>, (3.8)
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where
P,=¢R"+(2+¢)R™".

OnceC_; andC_; are given, (3.8) allows an explicit evaluation of all coefficiefits (n > 2).
Up to now, we do not consider the terms which are independeft Biis case in point is at
the end of this section.

The series (3.4), (3.5) will, however, show bad convergence for the pojntdar away
from the cylinder, and these series are not suitable for analysis of the asymptotic behaviour of
the potentials (see [5] for more details). Therefore, we need to work out an equivalent solution
which gives direct information about the asymptotic behaviour of the potentialg as oc.
Using the boundary conditions &t| — oo, we will define C_; and C_,. To do this we
introduce new functions

G1(€) =) C,R'E",  Ga§)=) C,RE" (3.9)
n=1 n=1

and their sum with weights

Wi(€) =eG1(§) + 2+ e)G2(8). (3.10)

Multiplying the recursive relations (3.8) iy and summing them with respectidrom 1 to
00, we obtain the following differential equation

=2 =2

Qi)W —i(L—ig)? [f—(l i)+ 27 — 1] W, — 20y Wy
2vy vy

=K1+ 2i(1+¢)(1—i&)%G,,

where

_2 —_
K, = f—C_sz —iC_q |:<_i + 2) TP+ (2+ 8)Rl_] ,
by Dy
2
E.9) = 80, (3.11)
&

A prime denotes differentiation with respect §o The general solution of this equation is
given by

i(lte) — 2y ks
W = —-— C_an In k , - In k ) - - .
1 fz(kl_kz); [n(vke, §) = Li(ykz, §)] clexp( 1_l§>
2)/kl K3
+czeXp(—1_ i§> ~ 25 (3.12)
where
ki = 525(1- 27 £ V1= 50), (3.13)
T
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2 Eoom 2
1,(B.&) = 4ip exp<—1 —ﬂi§> /O a _t i exp<1_ﬂit) dr (3.14)

andc; andc, are constants of integration. Real valigsandk, are possible a < ;11 only.
The constantg, ¢, are linearly dependent o6i_; and C_,. Indeed, Equation (3.10) give
W1(0) =0, W;(0) = C_1P1, and according to (3.12)

W1(0) = ¢, g vk _ c1 @ 2vks _ K1/ (2yD),
Wi(0) = 2iy (kacy e 2rk2 _ ficp @ 2rK1),

Consequently, from the solution of the resulting linear second-order system weayet
¢, for further application in the transformed form

(c1,c2) = (2+ &) (c1 €72, &, €271,
where

c1=a1C_1+b1C_y, 2 =aC_1+bC_y,

1 | P k k
Gi_ﬂl> b, — O (g =12,

YT 2otk \2y b 1T T2+ o) ks — ko)
L O Sy _ T (3.15)
V1 = 2)/ 1_)3/ TI1 & 1| U2 = 21_)]/2 2. .
(b) Case 2.

The solution forT1y” is derived in a similar way. The recursive relations rin (3.4), (3.5)
are

2

Coz—(n — 2(n — DP,_s
2vy

+Cpai(n —1) {[2 - - 1)] Th1— 8Rn_—l}
vy

3 2.2
+C, |:<4n7: Y ML ) P, — 2enR,;]
vy

n+1
+Cn+li(n + l) {[‘I:(viy) — 2:| TPn+l + 8Rn_+l}

2

+qﬂ£;m+am+nmﬁ=o (n > 1), (3.16)

Once(C; and C, have been defined, the series fﬂ)g‘) are determined except for the coeffi-
cients By and Cq, which are evaluated below. The valuestafandC, can be found with the
help of the boundary conditions gt — oo. We introduce new functions

Fi(§)=) C,R'€",  F(¢)=) CR"E", (3.17)

n=1 n=1
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Wa(§) = eF1(§) + 2+ &) F2(§) (3.18)

and obtain a differential equation

=2 =2
a4+ i) WY +i(1+i&)? [f—(1+ i£) — 27 — 1] Wy — 20y Wa
2vy vy

=Ky —2i(1+e)(1+i&)%F], (3.19)

where

2 . G _ _
Ky =—CoP+iC |:<_— - 2) TP+ (2+8)R1] .
vy vy

The general solution of Equation (3.19) is

_v(l+e) > i B B 2yky
WZ - .L—,Z(ks _ k4) ;CHR [Jn(yk/h f) Jn(yk3’ E)] +c3 eXp( 1+ lf)
2)//(3 Kz
+C4 eXp(—l+ lg) — ﬁ’ (320)
where
ka:%%ﬂ+Zfivl+4ﬂ, (3.21)
_ 26 \ [F " 28

J.(B, &) =4ip exp(—1Jr ig) /0 Y exp(1Jr it) dr (3.22)

andcsz andc4 are constants of integration, which are linearly dependent;cand C, similar
to case 1 According to (3.18) we hav#/»(0) = 0, W;(0) = C1P1, and according to (3.20)

Wa(0) = ca € 7" + ¢y €727 — Ky/(2y0),
W5(0) = 2iy (kacz € 2% + kgcq €252,

Consequently, from the solution of the resulting linear second-order system, weagetc,
(3, ca) = (2+ &) (G €74, &4 79),

where

c3 = azC1 + b3Cy, C4 = —(a4C1 + bsC),

1 iP]_ v3kq> kqu
= "~ + — ’ b = = = 3’ 4 ’
Y= 2% 6) (ks — ka) ( 2y Ty 2t otk 1739

U3 = - [(;—Z> fP1+(2+8)Rl_]
2y [\vy
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and wherev, is defined in (3.15). Furthermore, takigg= Rp~! € in (3.12) and: =
Rp~1 €% in (3.20), we get

Wi =) Cole(R”+1)+2p~" e,
n=1

Wo = ) Cile(R"+1) +2lp™" €. (3.23)
n=1

We shall consider the potential of the lower laye® at the interface. According to (3.5)
atp = R we have

o0 o0
MY (R.6)=Co+ ) C,Rie™, TR0 =Cot) GRS €,  (3.24)
n=1 n=1

whereR" = R" + R™". Using (3.23) ap = R, we obtain
MP(R,0) = Co+ (W1+2G1)/2+¢),  TP(R,0) =Co+ (Wa+2F)/(2+¢).

In order to determine the behaviol]rf; atod — w/2 (¢ — i), which is equivalent tox| —
00, it is necessary to investigate the properties of the integral funciigifs £) and 7, (B, £).
From (3.14) and (3.22) it is easy to ggt B, §) = —J*(B, &), where the symbot denotes the
complex conjugate. Computation of the integra|sis fully considered in [5], and the basic
results are briefly described in Appendix B.

Using these results, we can present the poteriﬂéiﬂjgat |x| = oo as follows

M = (& — 01Ay) €107 4 (014 — &) 20 7R 4, (3.25)
Y = (¢4 — 02A3) 3R 4 (6,44 + &g) 4R 4y (3.26)
where

A=) CLR'Si(yky) (q=12, A;=) CR'S(vky) (q=34),
n=1 n=1

1+¢
O12= ————F——=
2+e)V1F4r
ands; ands, are constants

K, 2G4(i) B K> 2F (i)
2yv(2+¢e)  2+¢’ 2yv(2+¢e) 2+¢&

s1 = Co 52 = Co
From (3.25), (3.26) it is seen that in the moving coordinate system the va\a®d k»
propagate from left to right, and the waviesandk,, on the contrary, from right to left. The
properties of these waves are well studied for homogeneous fluids with a free serface (
[1]-[4]) and are completely replicated for a two-layer infinite fluid. khevave is traveling



Diffraction of internal waves by a submerged circular cylind@69

upstream. Thé&;-wave, however, is traveling downstream together ithandk,-waves. For
a submerged body of arbitrary form the potentials of the diffraction W@&l@mre

d>(12)(x, y) = ap 207 (x — 0), (3.27)
CD(lZ)(x, y) = og €107 g @) 4y, @) (s 50, (3.28)

where the coefficients, (7 = 1, 2, 3, 4) are independent of the spatial coordinates and are
identified as a result of solving a particular problesmg(Sturova [10]).

When the submerged body is a circular cylinder, according to the above-mentioned results
either the waves with wave numbérsandk; exist at infinity, or those with wave numbets
andk4. They cannot exist at the same time. This result is a generalization of the fact that for
U = 0 there is no reflection from a submerged circular cylinder (see [1], [4] for details).

In the space-fixed reference frame, there are three types of following waves depending on
the forward velocity of the body, whereas the head wave is onlyweave, irrespective of
the forward speed. In following waves, when the body speed is less than the group velocity
of incident waves:, = wo/(2ko), i.e.U < c,, the dimensionless wavenumber of the incident
wave is equak, . For a body speed greater than the group velocity, but less than the phase
velocity of the incident wave, = wo/ ko, i.e.c, < U < ¢, , the incident wave is thig,-wave,
and for a body speed higher than the phase velatity c¢,, it is thekz-wave.

The solutions for each of the possible incoming waves are given below. Let the incoming
wave be ak;-wave. Using (3.27), (3.28) and (2.9), the potentidP at the interface in far
field, we can present

U (x,d) =e ™ g, ek (x - 00),
U (x,d) = 1+ay) €% (x > —o0).

In what follows we have

| k.
O{_q = — —q_aq d{qd (q = l’ 27 37 4)
ag

The unknown coefficient§_; andC_, for 1‘1(12) in (3.24) are identified as a result of fulfilment
of the next two conditions in the far field:

(i) the potential of thek;-wave in (3.25) att — oo is equal to the potential of the incident
wave;
(i) k>-wave is absent at — —oo.

As aresult, we obtain a system of two linear equations to determine the BeetdC_,, C_,)
AB = C, (3.29)

where the vecto€ = (e %1, 0) and the matriXA is

( a; —o1M11 by —o1Myp )

ay —o1Mo1 by — o1M>)
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Here
(Mi1, M) = Y R'SF (vka)(Q-n, T-),
n=1
(Mo1, Map) = ) RS, (vko)(Q—n, T-). (3.30)
n=1

CoefficientsQ_, andT_, are computed from the recursive relation (3.8)¢ar, atB = (1, 0)
andB = (0, 1), respectively. On solution of (3.29) we can define all coefficients of the series
for 1y in (3.4), (3.5)C_, = Q_,C_1 + T_,C_5.

It follows from the recursive relation (3.8) that , reduce askR” (R < 1), and from
(B6), (B7) thats, are bounded. Therefore, the series in (3.30) converg&gs:, and we can
achieve the required accuracy of computations by using a finite number of terms.

For an incomingk,-wave the potential® in the far field at the interface has the form

VO(x,d) = (1+ap e (x - 00),

WO (x,d) =ay ef* 4 gtkx (x - —00).

The vectoB is defined with use of the following two conditions:

(i) atx — oo thek;-wave is absent;
(i) the potential of thek,-wave atx — —oo is equal to the potential of the incoming wave.
As a result we get a linear system (3.29), but with the veCter (0, —e 7%2).

For an incomingcz-wave the potentialt @ in the far field at the interface has the form
VO (x,d) = € (x > 00),
VO (x,d) = A+d3) € +da, € (x > —0). (3.31)

Unknown coefficients, C, for 1‘[(22) in (3.24) are determined after the fulfilment of the next
two conditions in the far field at — oc:

(i) the potential ofkz-wave in (3.26) coincides with the potential of the incoming waves;
(i) k4-wave is absent.

We obtain a system of linear equations to determine the vEcter(Cy, C>)
FD =G, (3.32)

where the vecto6 = (—e7*3, 0), and the matri>E has the form

02M31 +az  02Msz + b3
O’2M41+a4 O’2M42+b4 '

(Msy, M) = Y R"SF(yka)(Vi, Wo),  (Mag, Mag) = ) R"S;} (yka) (Vir, W),
n=1 n=1
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CoefficientsV, and W, are computed according to the recursive relations (3.16Yfoat
D = (1,0) andD = (0, 1), respectively. On solution of (3.32) we can define all coefficients
of the series fof1y’ C, = V,C1 + W, Cs.

For an incomingk,-wave, we obtain the potentidl® in the far field on the interface from
(3.31) by replacing, with k3, anda, with az. We get the linear system (3.32), but with the
vectorG = (0, e %),

Upon computation of the vectoBs (D) for wavesk; » (k3 4), we can determine completely
the diffraction potentials. The coefficie@t is determined from the condition + s, = 0 (see
(3.25), (3.26)), andBy does from equation

K1+ K>+ 2yv[Bg — 2Co(1+¢)] = 0.

This equation is derived on substituting (3.3) in (3.6) and matching the coefficients in front of
terms which are independent @f

3.2. THE EXCITING FORCES

Computation of exciting forces (2.11) in dimensionless variables is performed according to
the formulas

— F,; [2 2 Y@ gw@
F, = O +e / |:i Fr - ﬁ\y@)] nj dp
P2108a ek Jo dp  dg

2+¢ . .
=\ (i Fry, — X)), (=12

where Fr= U/, /ag is the Froude number and

27 2
X; = /O V@n; dp = _/O W@y, dg, (3.33)
2r ) ) 2n )] 2
oYY oW oYY oW
Yj:/ n; (0:—/ )ul”lj d@, (334)
0 dp 0¢ 0 060 96
y COsH . dsing —1
= —CO0Sp = ——, =—sing = ————, 3.35
= ¢ sing —d "2 ¢ d —sing ( )
A(O) = 06/0¢|,=1 = (sin0 —d)/y. (3.36)

The steady potential is given in Appendix A. On the cylinder surface; 1, and using
(A1) we have

T® = 2Re{Z Z, e?"‘)} => (Z, €+ zZ; e, (3.37)
n=1

n=1

The quantitiesX; andY; are computed separately for the cases of incoming waves with
k = k1, andk = k3 4. FOr incoming waves witlk = k; , on the cylinder surface we have

v@=2%"c_,e™. (3.38)

n=1
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Substituting (3.37) and (3.38) in (3.33), (3.34), we obtain

X, =2 Zic / T gy g i( YV C_, R (3.39)
= —n T o = —4ar - nC_, K, .
! v —~ o (d—sing)? v —~ :
X, =2 ic fzn 1-dsinG i g9 — 4 i( Y'nC_,R" (3.40)
== —n - . <A = —4m - —n 5 .
2 4 —~ o (d—sing)? Y —~ v

o0 o0

2
Y; = 2 / > nC_, ey n(z,€" — z; ey coso do
0 n=1 n=1

o0

= 27 ) n(n+D(ConZuyr + Con1Zy),
n=1

2 (& C
Y, = _/ Y nC_, ey n(z, €" — z; &) (1~ dsing) do
Y Jo n=1 n=1
o0

2
= 3 nl2nC 7, —idn+ D€ Zrs — Cua Z)],
Y n=1

Evaluations of the integrals in (3.39), (3.40) are presented in [7].
For incoming waves witlt = k3 4 on the cylinder surface we have

00
v® =23 c, ",
n=1

o o
Xy =iXo=—4ry Y i""nC,R", Yi=21 n(n+D(C.Z} 1+ CosaZ}),

n=1 n=1
27_[ o0
Y, = ~ > nl2nC,Z; +id(n + 1)(CaZyyq — CaraZ))].
n=1

The series arising in the computation of the exciting forces converggaR < 1).

In Tables 1, 2 we give results fa,; on the cylinder submerged fat= 24 and for Fr= 0.6
(homogeneous fluid with free surfades. ¢ — oo) andFr = U//ga = 0-6 (two-layer fluid
with ¢ = 0-03), respectively. This value of the Froude number was chosen because, within the
rangekoa < 3, there are all possible incoming waves. For the wave coming from the right,
the critical point exists atga ~ 0-11915 (7 = %). For the wave coming from the left, the
behaviour of the exciting forces is more complex. Whgris small, we havé&oa = k. As
the wave frequency increasdsg,reaches the critical point @pa ~ 0-69444 that correspond
U = c,. The amplitudes of the forces vanish and the phase difference changes significantly
at this critical wavenumber. But the problem will not become supercriticdlpdacreases
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further. This is because in Equation (2.1) will decrease whépa > 069444 and the flow

is again subcritical, but withoa = k1. Whenkoa >~ 2.77778, we havew = 0 (U = ¢,).

At this wavenumber the real parts of both exciting forces have discontinuities at which the
absolute values are continuous, but the signs change. At greater wavenumbers the incident
wave is coming from the left in the moving system, and we haywe = k3. Only when

koa >~ 4-04752(71 = %1)’ does the flow become supercritical. However, this has no effect on
the submerged circular cylinder.

Similar results for a homogeneous fluid with free surface atF0-4 are given in [4].
Results are only listed up ttha = 1 with step 005. The exciting forces were normalized
asw F,; €9 /(ako). Comparison of numerical results [4] with results of our solution shows a
relative difference of less than 1%. Furthermore, in [2], [4] it was pointed out that the exciting
forces are continuous at the critical point= %. Our results confirm this statement for the
two-layer infinite fluid att = 3.
4. A circular cylinder submerged in the upper layer

Having performed the change = y; — d, let us transfer the origin of coordinates to the
cylinder center. The solution of this problem repeats in many aspects the reasonings of Section
3 and, therefore, will be given here in brief.

Instead of (3.1), the conformal mapping is now given by

i+ Rz
R—iz
The upper layer is contained in the annular regibr: |w| < 1, the lower layer is contained

in the circular regionw| < R.
The solution of the steady problem (2.3)—(2.6) is described in Appendix A.

w =

(4.1)

4.1. THE DIFFRACTION POTENTIALS

The potentialst® are presented as the series

00 00
\I’(l) — Z Cn(pn +p—n) einG’ \I-’(Z) — Z Bnplnl einG.

n=—oo n=—oo

Results obtained in Section 3 demonstrate that the conskgraisd Cy can be taken zero for
calculation of the exciting forces. Using the kinematic boundary condition in (2.8), we express
the coefficientsB, throughC, and write the potentials in the form (3.3), where now

(0, 0) = ) Coa(p"+p™Me™,  NP(p.0)=) Cup"+p e, (42)

n=1 n=1
H(Z) _ = — p—n .n ~—ind (2 _ = — p—n n nb
P0,0) =) C,R;R"p"e™, TP(p,0)=) C,R, R "p" €. (4.3)
n=1 n=1

In the variablesp, 6 the dynamic condition at the interface has the form (3.6) as before,
but now in (3.7)
dp 30

R .
T R = 2@ —sing). (4.4)
ay ax vy
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By substituting the representation &2 as a sum (3.3) of the series (4.2), (4.3) in (3.6)
and using (4.4), we obtain a recursive relation for the series coefficients.

We consider the solution fdi{"? (case } andI15-? (case 3 in its own right.
(a) Case 1.The recursive relations far_, are

72 -
Cong—m—=2)(n—1P,
2vy

+Cyi(n — 1) {[%(Zn —1) - 2] Py 1 — sRn__l}

3 2.2 5
+C_, [(4}11’ —2vy — dad > P, + Zgan—]
vy

+C_,1i(n+1) { [2 — %(Zn + 1)] TP+ eRn;l}

2
+Copam—(n+ 2+ DPyy2 =0,
2vy
where
P, =cR" — (2+¢&)R™™.
Once the coefficient6_; andC_, have been defined, the series]ftﬁfl’z) are fully determined.
We introduce additional functiong(¢) andG,(¢) as in (3.9). For their sum with weights

Wi(€) = eG1(§) — 2+ £)Ga(&) (4.5)

we obtain a differential equation

=2 =2
L A— i)W —i(1—i8)? [f—(l —ig)— 27 — 1] W, — 20y Wy
2vy vy

=K, —2i(1-i&)%G,, (4.6)
where
~ 72 - 7 -
K, = _—C_2P2—ic_1|:<_——2> ‘EPl—(2+€)Rl_j|. 4.7
vy vy
The general solution of (4.6) is
W, v ic R Uy (yka, £) — I (yks, &)] — cr exp( -2 X
= 57 I~ —n n s — 1in ’ —C -
1 (ks — k) 2 VK4 VK3 1 €Xp 1—it
2)/](3 Igl

wherel, is defined in (3.14)k3 4 are given in (3.21), and, ; are constants of integration

(c1,c2) = (2+ &) (C1 €754, &, €270,
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&1 =a3C_1+b3C_y, & = aaC 1+ bsyC_y,

~ 1 lﬁl 51]{ ~ kqﬁz
N Ny — =3,4),
%= <2+e>(k3—k4>( 5 ) = T 2T e ke —kn ¢ )

.L—_Z

5= —— [(_i_z> fﬁl—(2+e)R;], Uy = ——Pa. (4.8)

(b) Case 2.
The solution forTl;

2

Coze—(n — 2)(n — D) P,_2
2vy

(12 is derived in a similar way. The recursive relations €irare

—Cp1i(n — 1) {[2+ A - 1)] By — sRn__l}
vy
3 2.2 5
Cy |:(4nr + 2vy + m T ) P, — 28I’an_i|
vy

) t(2n+1 ~ _
+Chq1i(n + 1) {[% + 2:| TPy — 3Rn+1}

2
+Corze— (1 +2)(n + 1) Pyy2 = O, (4.9)
2vy

Once(C; and C;, have been defined, the series ﬁbf’z) are completely determined due to
(4.9). To defineaC; andC,, we introduce additional functiong, (§) and F»(¢) asin (3.17). For
their sum with weights

Wa(&) = eF1(§) — (2+ ) Fa(&) (4.10)

we obtain a differential equation
-2

T - 72 _ - .
— (L+i&)* W) +i(1+i&)? [_—(1+ i€) + 27 — 1] W, — 20y W,
2vy vy
= Ko+ 2i(1+i&)°F], (4.11)

where

- 2. I -

KZ = __C2P2 + iCl |:(_— + 2) ‘EP]_ - (2+ S)RI] .

vy vy

The solution of Equation (4.11) is

2vk;
= — R"
W, z(kl_kz) Zc [Jn(vke, €) = J, (ykz,s>]+c3exp( m)
2)//(1 152
+c4exp<—1+i§> — %
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whereJ, is defined in (3.22)k; , are given in (3.13), and; 4 are the constants of integration
(c3,ca) = (24 &) (G5 €72, G4 €7711),

Gz =a1C1+ b1Cy,  E4 = —(@2C1 + boCy),

3 1 iP sk, . ky U2
a;, = -~ + I ) b = = = 15 2 ’
R Ty (2y ; ) STtk 1707

Po= — [(i +2> TP — (2+8)R1_] ,
2y [\ vy

v, is defined in (4.8). 3 y
Leté = Rp~t e ¥ for Wy(£) in (4.5) andt = Rp~* €’ for W,(£) in (4.10). Then similar
to (3.23) we can write

Wi =) Cole(R”—1)—2p~" e,
n=1

o0

Wo = ) Cile(R" —1) —2lp™" €. (4.12)
n=1

Let us consider a behaviour of the upper layer potenitidl at the interface. According to
(4.2) and (4.3) ap = R we get

MY (R.0) =Y C_,Rfe™, TP(R.0)=> CRFe".

n=1 n=1

Using (4.12) we have

MY(R,0) = [214#)G1— Wil/+e),

M (R, 0) = [2(1+¢&)F1 — Wal/(2+¢).
By applying the properties of integral functiotig(8, £) (see Appendix B), we determine the

behaviour off1{’) até — 7/2 (¢ — i), which is equivalent tax| — oo. As a result the

potentialsI1{}, at|x| — oo can be represented in the form

M = G144 + &) 4@ 7R — (G145 + &) R,
MY = (G47) €200 — (5,4, 4 &) @ hHr+R),

where

Ay =) CR'Sivky) (¢=12., A;=) C.R'S(vky) (¢=34)
n=1 n=1
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o =
YT 2te/itar

Derivation of a final solution for each of the possible incoming waves is similar to that in
Section 3.1. The condition in the far field from which the coefficiefis are determined for
wavesk; , andC_; _, for wavesks 4 are the same those as given in Section 3.1 for a relevant
wavek, (¢ =1,2,3,4).

4.2. THE EXCITING FORCES

Computation of exciting forces (2.11) in dimensionless variables is performed according to
formulae

. Fy /2 2 AT owd
F, = J_ +8/ [ﬁw(l)—iFr——} n; dp
p1M08a ek Jo dg ¢

2+¢ ~ R .
=V (WVX;—iFrY) (=12

B 2 2
X; =/O WDn; dp = —/O w1y do,

B 2t 97D gy 2t 97D gy
njdp =— An; do,
0 0

i= YL 90 00
ny = y cosd/(d — sind), ny = (1—dsing)/(d — sing).
The expression fok is presented in (3.36).

The solution for the steady potential™ is given in Appendix A and on the cylinder
surface ap = 1 by use of (A12) is

o0 o0
TO = 2Re{z Z, e,w} => (2, €+ zZ;e™). (4.13)
n=1 n=1
For incoming waves witlt = k1 , we obtain
o0 o0
Xi=iXp=4dny ) i"C,R",  Yi=-21) n+1D(CiZ g+ CrnaZy),
n=1 n=1
v 21 = * ; * *
Vo= —— n[2nC,Z: +id(n + 1)(C, Z} .1 — Coy1Z1)].
4 n=1

For incoming waves with = k3 4

o8]
Xy = —iXo =4y Y (-i)""'nC_,R",
n=1

oo
V1= =21 ) n(n+D(CopZuss+ ConaZy),
n=1
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Table 1. Exciting forces on a cylinder under a free surface in a homogeneous fluid witBa and Fr= 0-6.

Wave from the left Wave from the right

koa | Re(Fp1) | Im(Fe1) | Re(Fp2) | IM(F2) | Re(Fp1) | IM(Fo1) | Re(Fp) | IM(F2)
01 | —0-25637 | —0-94515 1.18401 | —0-29152 0-02296 | 0-58647 | 0-42760 | —0-01056
0-2 | —1.46555| —1.13977 1.38610 | —1.69758 0-07849 | 092148 | 0-73267 | —0-05413
0-3 | —1.44796 | —0-09611 0-15285 | —1.66927 0-12495 | 1.07288 | 0-88160 | —0-09345
04 | —0-84911 0-14583 | —0-14098 | —0-97405 0-14468 | 1.11097 | 092840 | —0-11135
06 | —0-18382 0-05175| —0-05261 | —0-20963 0-12835| 1.02643 | 0-87063 | —0-09949
08 | —0-16072 | —0-04384 0-04695| —0-18186 0-08929 | 0-86569 | 0-73702 | —0-06729
1.0 | —0-39600 | —0-11427 0-12330 | —0-44947 0-05554 | 069575 | 0-59118 | —0-03928
1.4 | —0.58931| —0-51450 0-58497 | —0-67586 001819 | 0-41071 | 0-34393 | —0-00908
1.8 | —0-08601| —0-46135 0-52989 | —0-09416 0-00529 | 0-22307 | 0-18192 0-00021
2.2 | —0-01065| —0-22394 0-25740 | —0-00841 0-00140 | 0-11378 | 0-08913 0-00209
2.6 | —0-00201 | —0-11445 0-13217 0-00012 0-00028 | 005498 | 0-04053 0-00197
3.0 0-00034 | —0-05941 | —0-06912 0-00112 | —0-00004 | 0-02519 | 0-01686 0-00147

Table 2. Exciting forces on a cylinder under a lower fluid with= 2a andFr = 0.6 for a two-layer fluid with
e = 0-03.

Wave from the left Wave from the right

koa | Re(Fp1) | ImM(Fe1) | Re(Fp2) | IM(F2) | Re(F1) | IM(F1) | Re(Fe2) | IM(Fp)
01 | —0-08339| —0-72116 0-86090 | —0-09020 | 0-01111 | 056803 | 0-45256 | —0-00589
0-2 | —0-47209 | —1.26927 1.45430 | —0-52292 | 0-03925 | 0-91295 | 0-77453 | —0-02934
03 | —1.08303 | —1.19839 1.35697 | —1.19792 | 0-06528 | 1.09373 | 095123 | —0-05232
04 | —1.19585 | —0-57655 0-65623 | —1.31912 | 0-07894 | 1.16386 | 1.02576 | —0-06491
0-6 | —0-35321 0-00566 | —0-00102 | —0-38854 | 0-07488 | 1.12141 | 1.00145 | —0-06220
08 | —0-30473 | —0-08615 0-09255 | —0-33452 | 0-05425 | 097334 | 0-87385 | —0-04431
1.0 | —0-62632 | —0-39766 0-43274 | —0-68837 | 0-03456 | 079950 | 0-71892 | —0-02708
14 | —0-24286 | —0-71281 078291 | —0-26644 | 0-01159 | 0-48983 | 0-43916 | —0-00729
1.8 | —0-02959 | —0-39554 0-43520 | —0-03037 | 0-00342 | 027680 | 0-24615 | —0-00078
2:2 | —0-00463 | —0-20586 0-22702 | —0-00338 | 0-00093 | 0-14829 | 0-13024 0-00076
2.6 | —0-00093 | —0-10798 0-11961 0-00009 | 000021 | 0-07639 | 0-06597 0-00088
3.0 0-00017 | —0-05636 | —0-06281 0-00053 | 0-00001 | 0-03815 | 0-03223 0-00069

. or & .
Vo=~ nl2nCoyZy — id(n + 1)(ConZnss — Cn1Z)].
V n=1

In Table 3 we give results foF,; on the cylinder located above the interfacehat 2a
and forFr = 0-6 with ¢ = 0-03. Critical values ofa fully correspond to those existing
for results given in Tables 1 and 2 (see Section 3.2). Using the results given in Tables 1—
3, we can calculate both the amplitudes and the phase differences of exciting forces. The
qualitative behaviours of the amplitudes of exciting forces are similar to each other in the all
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Table 3. Exciting forces on a cylinder in upper fluid with = 22 andFr = 0.6 for a two-layer fluid with
e = 0-03.

Wave from the left Wave from the right

koa | Re(Fp1) | ImM(F1) | Re(Fpp) | IM(Fp) | Re(Fpy) | IM(Fp1) | Re(Fp) | IM(Fp2)
01 | —0.07995| —0-71536 | —0-85275 0-08636 | 0-01077 | 0-56749 | —0-45328 0-00573
0-2 | —0-45010| —1.26055 | —1.44237 0-49792 | 0-03809 | 0-91266 | —0-77572 0.02854
0-3 | —1.04698 | —1.21999 | —1.37897 1.15666 | 0-06343 | 1.09428 | —0-95324 0-05094
04 | —1.19190| —0-61678 | —0-69968 1.31328 | 0-07680 | 1-16538 | —1.02865 0.06327
0-6 | —0-36290 0-00143 | —0-00359 0-39878 | 0-07300 | 1.12435 | —1.00550 0-06076
0-8 | —0-31295| —0-08996 | —0-09666 0-34322 | 0-05296 | 0-97677 | —0-87820 0.04335
1.0 | —0-63111| —0-41712 | —0-45373 0-69294 | 0-03376 | 0-80286 | —0-72302 0-02652
14 | —-0.23212| —-0-71169 | —0-78078 0-25430 | 0-01133 | 0-49241 | —0-44224 0.00716
1.8 | —0-02843 | —0-39378 | —0-43272 0-02912 | 0-00334 | 0-27854 | —0-24821 0-00078
2.2 | —0.00448 | —0-20536 | —0-22619 0-00326 | 0-00091 | 0-14940 | —0-13155| —0-00073
2.6 | —0-00091| —0-10780 | —0-11925| —0-00009 | 0-00021 | 0-07708 | —0-06678 | —0-00085
3.0 0-00016 | —0-05627 0.06262 | —0-00051 | 0-00001 | 003857 | —0-03272 | —0-00067

considered cases. However, the phase difference of about 180 degrees exists between heave
exciting forces on cylinder located in the upper and the lower layers.

5. Discussion

The explicit solution, which was obtained in [5] for surface-wave diffraction by a circular
cylinder without forward speed and then extended in [7], [8] for case of a two-layer fluid, is
presented in this work for the general case of internal wave diffraction in a uniform current
of a two-layer fluid. The solution is obtained in the form of rapidly converging series and
makes it possible to investigate relatively easily all the characteristics of the flow depending
on the parameters of the problem. The numerical results presented in Tables 1-4 are obtained
from only the nine first terms in the series. Further increase of the number of terms does not
change the results. The problem considered here is one constituent of the linear theory of
seakeeping. We think that the solution of the seakeeping problem for a body of an arbitrary
form is possible only with numerical methods. There arises the question about the estimation
of the accuracy of the numerical algorithms used. For this purpose, it is useful to have test
solutions of similar problems for bodies of simple geometry. Usually, for 2-D flows a circular
cylinder is such a body. For a two-layer fluid an effective numerical method of the solution
of a linear problem of seakeeping for a submerged body is the coupled finite-element method
(CFEM). This method was applied for steady flow by Sturova [11] and for radiation and
diffraction of internal waves by a submerged cylinder at forward speed by Sturova [10]. In the
first paper, the upper layer can be bounded by a rigid lid or free surface, in the second one by
only a rigid lid. The comparison of the numerical results obtained for a circular cylinder in an
unbounded two-layer fluid by CFEM and the given explicit solution showed fair agreement.
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Appendix A. The steady problem

The solution technique for the steady problem (2.3)—(2.6) is a multilateral replica of that used
in Sections 3, 4 for a diffraction problem appropriate to a cylinder located in the lower and
upper layer.

A.1. The cylinder in the lower layer

In dimensionless variables, using the conformal mapping (3.1), we write the potentials
as the series

) 00
TO — RE[Z Zan_R_n,On einG} , TR — Re{zzn(pn +p gnf | (Al)
n=1 n=1

The notation is identical to that of Section 3.
In the coordinateg, 6 the dynamic condition at the interface (2.6) has the form

327, (96\2 9. 9% 3T 9p
(= e L -0 (p=R),
962 <8x> 20 a2 Mo ay (p=R)

where
Y. =A4+e)Y? 1D u=ag/U?=1/Fr
The recursive relations for the coefficients in (Al) are
Zyo(n—=2)n =Py 2—2Z,1iln —D[(2n — D P,_1 +epny R, 4]
—2Z,n(3BnP, + 2epy R,)) + 2Z,1i(n + D[(2n + 1) Poa + ey R, 4]
+Zyp2(n+2)(n+1)P,o =0. (A2)

The coefficientsZ,; and Z, are determined from the radiation condition from which, far
ahead of the cylinder, the potential¥*) correspond the a uniform current. It is convenient
to introduce new functions

Fi§) =) Z,R"€",  F(6) =) Z,R"E", (A3)
n=1

n=1

which are similar to those used in (3.17). For their sum with weights

Wi(§) = e F1(§) + (24 &) F2(§) (Ad)
we obtain a differential equation

(L4 i&)* W) + 2i (1 + i&)2(L + iE — iy)W] = Ko — 4ifiy (1 + &) (1 + i€)2F],
where

fi=epn/(2+e), Ko=2{ZaPr+iZi[P1—2y*i(1+ e}
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The general solution of this equation is

vo_ 1 iKo (. . 2BEN\ . .
" T [ 26 (1 eXp1+i$> 2pte) [2F1+;an Jn(ﬁ,é)}
-2
+CoeXpl+f&_},

whereg = y i, ¢ is the constant of integration, is defined in (3.22). Below, the deriva-
tive of Wy is used only. From (A4W;(0) = Z1 P, and we haveg = Z1 P, e,
Let us consider the behaviour of thederivative ofY'® at the interface

2 2 Fg@fy2 X
L T b a0 P o Lt
ox 00 odx |’ 2y —~
(1+ i ei@)z I nl

The latter equality in (A5) follows from the form d¥; até = € according to (A4). Using
the results of Appendix B, we obtain fpr| — oo

or? 1 iKo | ooz R
ax  2y(2+e) ﬁ—i_ Pa(ix+y = R)
w | z,p, — Koy, (1+)OOZR”S() (A6)
AT, ip € ; nRYSi(B) | ¢ -

From the radiation condition the wave motion can exist only downstream of the cylireer,
Y@ /ax > —1 (x — 00). (A7)

This means that the expression in square brackets in (A6) fer oo must be zero. Using
(A7) for the remaining non-wave part, we have the following linear second-order system for
the definition ofZ; andZ»

Z1 {Zt’ﬁ(l +e) Y AR"SS(B) - Pl}

n=1
+Z22if(1+¢€) Y B,R'S (B) = 2y(2+¢). (A8)
n=1
Zl[Pl — 2)/,3(2 + 8)] — ZziPz = 2)/,3(2 + 8). (Ag)

Here A, and B, are computed from the recursive relations (A2)7at= 1, Z, = 0 and
Z1 =0, Z, =1, respectively. On solving (A8), (A9), we can define all coefficiefjtof the
series (A1)
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In the limiting casest — 0 andjix — oo the problem can be essentially simplified. At
it — 0 (Fr — oo) we have the problem of the uniform current of a weightless two-layer fluid
past a cylinder. The assumptigh— oo (Fr — 0) is equivalent the change of the interface
by the solid plane. In both limiting cases to find the coefficienitdn the recursive relations
(A2) we need to determing, only (see [8] for more details).

Computation of the steady loads (2.10) is performed in the following way

_ F, 1 [% 1 (27 (97?2
Foo v 1 VY@, d :__/ ") an, o, A1l
T poal? 2/0 | I de 2 )0 00 " (AL1)

where (3.35), (3.36) have been used. The poteiti&l on the cylinder surface is determined
in (3.37). We can easily evaluate the integral (A11)

00
Fsl = -7 Zn(n + 1)(ZnZ:+l + Zn+1Z;:)a
n=1

o0

- T .

Fop= - § n(2n|Z, 1> +id(n + )(Z, Z: 1 — Zns1ZD)]-
n=1

These series converge R$' (R < 1).

A.1. The cylinder in the upper layer

In dimensionless variables, using the conformal mapping (4.1), we may write the potentials
T as the series

T® = Re Z Zy(p" +p™") ef"Q} , T® = Re{ZZnR;R-"p"ef"g} . (A12)
n=1 n=1

The recursive relations for the coefficients in (A12) are as follows:
Zn-a(n —2)(n — VP, — 2Zy 1i(n — D[(2n — D P,y — epy R, 4]
—2Z,n(BnP, — 26y Ry)) + 2Zp41i(n + D[(2n + 1) Py — ey R, 4]
+Zps2(n+2)(n + 1) Pyip = 0. (A13)

All notations are identical to those of Section 4. To determine the coeffici&néd Z, we
introduce new functions (A3), and for their sum with weights

Wa(&) = e F1(§) — 2+ £) Fa(§) (A14)
we obtain a differential equation

(L + &)Wy +2i(1+i&)?(L+ i — iy)Wy = Ko+ dijiy (L+ &) (1 + i£)?F;,
where

Ko=2{ZyP, +iZ1[P1 + 2% (2 + &)]).
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The solution forW} has the form

oo L iKo( 2Pk
Wz = (1+i§)2{2,3 (1 ex'°1+is)

. B ~ —2p
2iB | 2F Z,R"J,(B, ex —
+lﬂ[ 1+n§_1 (B E)}wLCo p1+z$
where & is the constant of integration. From (A14),(0) = Z;P; and we havey =

VAN -
Let us consider a behaviour of thederivative of YD at the interface

1 1 SN0y
or® _ A ¢ )% . _A+i€) ZnZnR,j g (1—1)o
ox | __, 00 ox | 2y =
(1+ie%% _. _

The latter equality in (A15) follows from the form dﬁ/é até = €Y according to (A14).
According to the radiation conditioaAY/dx — —1 atx — oo and we have the linear
second-order system for the definitionZf andZ,

z {21;3 D AR'SS(B) + ﬁl} +Z22ip Y B.R"S)(B) = —2y 2+e), (A16)
n=1 n=1
Z1[PL+ 2yB(2 4 €)] — Z2i P, = 2yB(2 + ¢). (A17)

HereA, andB, are computed from the recursive relations (A13Yat= 1, Z, = 0andZ; =
0, Z, = 1, respectively. On solving (A16), (A17) with (A10), we can define all coefficients
of the series (A12).

Computation of the steady loads (2.10) is performed in the following way

~ F, 1 [ (o7®)?
Fj = 5 =—5 An; do.
,01aU 2 0 a0

The potential® on the cylinder surface is determined in (4.13) and the resultant expressions
are

o
Fa=m) nn+1(ZZ} 1+ Zui1Zy),
n=1

o0

~ T
Fo==Y nl2n|Z,* +id(n+ 1(Z,Z} .1 — Zu1aZ})].
n=1

In Table 4 we give the wave resistance and lift on a circular cylinder wita 2a and
¢ = 0-03. The Froude number is here definedras= U/./gh. For a homogeneous fluid with
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Table 4. Wave resistance and lift on a circular cylinder with= 2a.

Homogeneous fluid Two-layer fluid withe = 0-03
with free surface | cylinder in lower layer| cylinder in upper layer
Fn - _sl FsZ _Fsl FSZ _Fsl FsZ

0-0 | 0-00000 0-22978 | 0-00000 0-22978 | 0-00000 | —0-22978
0-2 | 0-00000 0-26426 | 0-00000 0-24713 | 0-00000 | —0-24662
04 | 000724 0-45068 | 0-00332 0-33640 | 0-00322 | —0-33314
0-6 | 065972 0-87870 | 0-28947 052419 | 027981 | —0-51465
0-8 | 1.03160 0-14388 | 0-51431 0-18746 | 0-49886 | —0-18874
1.2 | 0-34919| —0-37258 | 020619 | —0-13184 | 0-20110 0-12309
1.6 | 010634 | —0-31638 | 0-06431 | —0-10596 | 0-06278 0-09815
2.0 | 003727 | —0-26041 | 0-02239 | —0-06969 | 0-02186 0-06267
co | 0-00000 | —0-16956 | 0-00000 | —0-00290 | 0-00000 | —0-00291

a free surface we havg — g andFn — Fn = U/./gh. The numerical results for steady
hydrodynamic loads in a homogeneous fluid are in a complete agreement with the results of
[4], where only the range-B < Fn < 1 was considered. A graphic presentation of wave
resistance and lift on a circular cylinder located in the upper or lower layer of a two-layer fluid
was presented by Wu [12]. Our solution has confirmed these results.

The wave resistance as a functionFaf is shown for all three cases in Table 4. They are
seen to be similar. The behaviour of the lift depends on location of the cylinder above or below
the interface. Near a solid planEn(— 0) the cylinder is attracted to the plane. In another
limiting case of weightless fluid the vertical forces are always directed downwiaedthe
sinking force acts on the body regardless of its location.

Appendix B. The special integrals

Through partial integration, the integralg in (3.22) are shown to be connected recurrently
starting from the two integralg,, J1. We have

Jny1 =200, — 2;;'8(25” +J)+ s (n 21, (B1)
Jo=2 [exp(%) — 1: , (B2)
J1 = 4ip exp(— 1 —Zfi§> :insign<lm 1 iﬁis)

— E; (-%) - Ei(2ﬂ)} + i Jo. (B3)

We have used the standard definitions of the exponential integrals Eiaad given by
Abramowitz and Stegun [13]). The functidfy has a branch cut along the negative real axis.
Assumingé = R/w*, we obtain:
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for a cylinder located in the lower layer, according to (3.1)

! —1(1 /Rx — Ry) '8 —1('+ R); (B4)
1+ie  2yR T T Tyt Ty
for a cylinder located in the upper layer, according to (4.1)
1 1 , i& 1 .
11 _ZJ/—R(1+le+Ry), T _—g(tx—i-y—l-R). (B5)
Defining the new functions,, (8, &) by formulae
_ 2P n
Jn(ﬁ,é)—exp<l+i§>5n(ﬂ,5) 2",
we have from (B1)-(B5) atc| — oo (¢ — i, w — R)
Sn+l =81+ 21(1 - ﬂ/n)Snv (86)
So = 2, Sy = 2i + 4B e 2[5 sign(x) — i Ei(2B)], (B7)

wheres = +1 ands = —1 for the cylinder located in the lower and upper layers, respectively.
From (B6), (B7) it is evident that df| — oo for the given location of the cylinder, thg,
depend only or8 and sigrix). Here we use the notatia$(8), where the upper signst*

and ‘—’ correspond to sigx).
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